922 resultados para Local uniqueness of equilibrium prices
Resumo:
The objective of this thesis is the exploration and characterisation of the nanoscale electronic properties of conjugated polymers and nanocrystals. In Chapter 2, the first application of conducting-probe atomic force microscopy (CP-AFM)-based displacement-voltage (z-V) spectroscopy to local measurement of electronic properties of conjugated polymer thin films is reported. Charge injection thresholds along with corresponding single particle gap and exciton binding energies are determined for a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin film. By performing measurements across a grid of locations on the film, a series of exciton binding energy distributions are identified. The variation in measured exciton binding energies is in contrast to the smoothness of the film suggesting that the variation may be attributable to differences in the nano-environment of the polymer molecules within the film at each measurement location. In Chapter 3, the CP-AFM-based z-V spectroscopy method is extended for the first time to local, room temperature measurements of the Coulomb blockade voltage thresholds arising from sequential single electron charging of 28 kDa Au nanocrystal arrays. The fluid-like properties of the nanocrystal arrays enable reproducible formation of nanoscale probe-array-substrate junctions, allowing the influence of background charge on the electronic properties of the array to be identified. CP-AFM also allows complementary topography and phase data to be acquired before and after spectroscopy measurements, enabling comparison of local array morphology with local measurements of the Coulomb blockade thresholds. In Chapter 4, melt-assisted template wetting is applied for the first time to massively parallel fabrication of poly-(3-hexylthiophene) nanowires. The structural characteristics of the wires are first presented. Two-terminal electrical measurements of individual nanowires, utilising a CP-AFM tip as the source electrode, are then used to obtain the intrinsic nanowire resistivity and the total nanowire-electrode contact resistance subsequently allowing single nanowire hole mobility and mean nanowire-electrode barrier height values to be estimated. In Chapter 5, solution-assisted template wetting is used for fabrication of fluorene-dithiophene co-polymer nanowires. The structural characteristics of these wires are also presented. Two-terminal electrical measurements of individual nanowires indicate barrier formation at the nanowire-electrode interfaces and measured resistivity values suggest doping of the nanowires, possibly due to air exposure. The first report of single conjugated polymer nanowires as ultra-miniature photodetectors is presented, with single wire devices yielding external quantum efficiencies ~ 0.1 % and responsivities ~ 0.4 mA/W under monochromatic illumination.
Resumo:
In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.
Inclusive education policy, the general allocation model and dilemmas of practice in primary schools
Resumo:
Background: Inclusive education is central to contemporary discourse internationally reflecting societies’ wider commitment to social inclusion. Education has witnessed transforming approaches that have created differing distributions of power, resource allocation and accountability. Multiple actors are being forced to consider changes to how key services and supports are organised. This research constitutes a case study situated within this broader social service dilemma of how to distribute finite resources equitably to meet individual need, while advancing inclusion. It focuses on the national directive with regard to inclusive educational practice for primary schools, Department of Education and Science Special Education Circular 02/05, which introduced the General Allocation Model (GAM) within the legislative context of the Education of Persons with Special Educational Needs (EPSEN) Act (Government of Ireland, 2004). This research could help to inform policy with ‘facts about what is happening on the ground’ (Quinn, 2013). Research Aims: The research set out to unearth the assumptions and definitions embedded within the policy document, to analyse how those who are at the coalface of policy, and who interface with multiple interests in primary schools, understand the GAM and respond to it, and to investigate its effects on students and their education. It examines student outcomes in the primary schools where the GAM was investigated. Methods and Sample The post-structural study acknowledges the importance of policy analysis which explicitly links the ‘bigger worlds’ of global and national policy contexts to the ‘smaller worlds’ of policies and practices within schools and classrooms. This study insists upon taking the detail seriously (Ozga, 1990). A mixed methods approach to data collection and analysis is applied. In order to secure the perspectives of key stakeholders, semi-structured interviews were conducted with primary school principals, class teachers and learning support/resource teachers (n=14) in three distinct mainstream, non-DEIS schools. Data from the schools and their environs provided a profile of students. The researcher then used the Pobal Maps Facility (available at www.pobal.ie) to identify the Small Area (SA) in which each student resides, and to assign values to each address based on the Pobal HP Deprivation Index (Haase and Pratschke, 2012). Analysis of the datasets, guided by the conceptual framework of the policy cycle (Ball, 1994), revealed a number of significant themes. Results: Data illustrate that the main model to support student need is withdrawal from the classroom under policy that espouses inclusion. Quantitative data, in particular, highlighted an association between segregated practice and lower socioeconomic status (LSES) backgrounds of students. Up to 83% of the students in special education programmes are from lower socio-economic status (LSES) backgrounds. In some schools 94% of students from LSES backgrounds are withdrawn from classrooms daily for special education. While the internal processes of schooling are not solely to blame for class inequalities, this study reveals the power of professionals to order children in school, which has implications for segregated special education practice. Such agency on the part of key actors in the context of practice relates to ‘local constructions of dis/ability’, which is influenced by teacher habitus (Bourdieu, 1984). The researcher contends that inclusive education has not resulted in positive outcomes for students from LSES backgrounds because it is built on faulty assumptions that focus on a psycho-medical perspective of dis/ability, that is, placement decisions do not consider the intersectionality of dis/ability with class or culture. This study argues that the student need for support is better understood as ‘home/school discontinuity’ not ‘disability’. Moreover, the study unearths the power of some parents to use social and cultural capital to ensure eligibility to enhanced resources. Therefore, a hierarchical system has developed in mainstream schools as a result of funding models to support need in inclusive settings. Furthermore, all schools in the study are ‘ordinary’ schools yet participants acknowledged that some schools are more ‘advantaged’, which may suggest that ‘ordinary’ schools serve to ‘bury class’ (Reay, 2010) as a key marker in allocating resources. The research suggests that general allocation models of funding to meet the needs of students demands a systematic approach grounded in reallocating funds from where they have less benefit to where they have more. The calculation of the composite Haase Value in respect of the student cohort in receipt of special education support adopted for this study could be usefully applied at a national level to ensure that the greatest level of support is targeted at greatest need. Conclusion: In summary, the study reveals that existing structures constrain and enable agents, whose interactions produce intended and unintended consequences. The study suggests that policy should be viewed as a continuous and evolving cycle (Ball, 1994) where actors in each of the social contexts have a shared responsibility in the evolution of education that is equitable, excellent and inclusive.
Resumo:
Coastal lagoons are defined as shallow coastal water bodies partially separated from the adjacent sea by a restrictive barrier. Coastal lagoons are protected under Annex I of the European Habitats Directive (92/43/EEC). Lagoons are also considered to be “transitional water bodies” and are therefore included in the “register of protected areas” under the Water Framework Directive (2000/60/EC). Consequently, EU member states are required to establish monitoring plans and to regularly report on lagoon condition and conservation status. Irish lagoons are considered relatively rare and unusual because of their North Atlantic, macrotidal location on high energy coastlines and have received little attention. This work aimed to assess the physicochemical and ecological status of three lagoons, Cuskinny, Farranamanagh and Toormore, on the southwest coast of Ireland. Baseline salinity, nutrient and biological conditions were determined in order to provide reference conditions to detect perturbations, and to inform future maintenance of ecosystem health. Accumulation of organic matter is an increasing pressure in coastal lagoon habitats worldwide, often compounding existing eutrophication problems. This research also aimed to investigate the in situ decomposition process in a lagoon habitat together with exploring the associated invertebrate assemblages. Re-classification of the lagoons, under the guidelines of the Venice system for the classifications of marine waters according to salinity, was completed by taking spatial and temporal changes in salinity regimes into consideration. Based on the results of this study, Cuskinny, Farranamanagh and Toormore lagoons are now classified as mesohaline (5 ppt – 18 ppt), oligohaline (0.5 ppt – 5 ppt) and polyhaline (18 ppt – 30 ppt), respectively. Varying vertical, longitudinal and transverse salinity patterns were observed in the three lagoons. Strong correlations between salinity and cumulative rainfall highlighted the important role of precipitation in controlling the lagoon environment. Maximum effect of precipitation on the salinity of the lagoon was observed between four and fourteen days later depending on catchment area geology, indicating the uniqueness of each lagoon system. Seasonal nutrient patterns were evident in the lagoons. Nutrient concentrations were found to be reflective of the catchment area and the magnitude of the freshwater inflow. Assessment based on the Redfield molar ratio indicated a trend towards phosphorus, rather than nitrogen, limitation in Irish lagoons. Investigation of the decomposition process in Cuskinny Lagoon revealed that greatest biomass loss occurred in the winter season. Lowest biomass loss occurred in spring, possibly due to the high density of invertebrates feeding on the thick microbial layer rather than the decomposing litter. It has been reported that the decomposition of plant biomass is highest in the preferential distribution area of the plant species; however, no similar trend was observed in this study with the most active zones of decomposition varying spatially throughout the seasons. Macroinvertebrate analysis revealed low species diversity but high abundance, indicating the dominance of a small number of species. Invertebrate assemblages within the lagoon varied significantly from communities in the adjacent freshwater or marine environments. Although carried out in coastal lagoons on the southwest coast of Ireland, it is envisaged that the overall findings of this study have relevance throughout the entire island of Ireland and possibly to many North Atlantic coastal lagoon ecosystems elsewhere.
Resumo:
This thesis explores the psychosocial wellbeing of sub-Saharan African migrant children in Ireland. A sociocultural ecological (Psychosocial Working Group, 2003) and resilience lens (Masten & Obradovic, 2008; Ungar, 2011) is used to analyse the experiences of African migrant children in Ireland. The research strategy employs a mixed-methods design, combining both an etic and emic perspective. Grounded theory inquiry (Strauss and Corbin, 1994) explores the experiences of African migrant children in Ireland by drawing on multi-sited observations over a period of six months in 2009, and on interviews and focus group discussions conducted with African children (aged 13-18), mothers and fathers. An emically derived ‘African Migrant Child Psychosocial Well-being’ scale was developed by drawing on data gathered through rapid ethnographic (RAE) free listing exercises carried out in Cork, Dublin and Dundalk with sixty-one participants (N=21 adults, N=28 15-18-year-olds, N=12 12-14-year-olds) and three African community key informants to elicit local understandings of psychosocial well-being. This newly developed scale was used alongside standardised measures of well-being to quantitatively measure the psychosocial adjustment of 233 African migrant children in Cork, Dublin and Dundalk aged 11-18. Findings indicate that the psychosocial wellbeing of the study population is satisfactory when benchmarked against the psychosocial health profile of Irish youth (Dooley & Fitzgerald, 2012). These findings are similar to trends reported in international literature in this field (Georgiades et al., 2006; Gonneke, Stevens, Vollebergh, 2008; Sampson et al., 2005). Study findings have implications for advancing psychosocial research methods with non-Western populations and on informing the practice of Irish professionals, mainly in the areas of teaching, psychology and community work.
Resumo:
The transport of uncoated silver nanoparticles (AgNPs) in a porous medium composed of silica glass beads modified with a partial coverage of iron oxide (hematite) was studied and compared to that in a porous medium composed of unmodified glass beads (GB). At a pH lower than the point of zero charge (PZC) of hematite, the affinity of AgNPs for a hematite-coated glass bead (FeO-GB) surface was significantly higher than that for an uncoated surface. There was a linear correlation between the average nanoparticle affinity for media composed of mixtures of FeO-GB and GB collectors and the relative composition of those media as quantified by the attachment efficiency over a range of mixing mass ratios of the two types of collectors, so that the average AgNPs affinity for these media is readily predicted from the mass (or surface) weighted average of affinities for each of the surface types. X-ray photoelectron spectroscopy (XPS) was used to quantify the composition of the collector surface as a basis for predicting the affinity between the nanoparticles for a heterogeneous collector surface. A correlation was also observed between the local abundances of AgNPs and FeO on the collector surface.
Resumo:
p.139-144
Resumo:
p.155-158
Resumo:
The theory of New Public Management (NPM) suggest that one of the features of advanced liberal rule is the tendency to define social, economic and political issues as problems to be solved through management. This paper argues that the restructuring of Higher Education (HE) in many Western countries since the 1980s has involved a shift from an emphasis on administration and policy to one of its efficient management. Utilising Foucault’s concept of governmentality rather than the liberal discourse of management as a politically neutral technology, managerialism can be seen as a newly emergent and increasingly rationalised disciplinary regime of governmentalising practices in advanced liberalism. As such the contemporary University as an institution governed by NPM can be demonstrated to have emerged not as the direct outcome of democratic policies that have rationalised its activities (so that the emancipatory aims of personal development, an educated workforce and of true research can be fully realised), nor can it be understood as the instrument through which individuals or self-realising classes are defeated through the calculations of the state acting on behalf of economic interests, rather it can be seen as the contingent and intractable outcome of the complex power/knowledge relations of advanced liberalism. I analyse the interlocking of the ‘tutor-subject’ and ‘student-subject’ as a local enacting of policy discourse informed by the NPM of HE that reshapes subjectivity and retunes the relationship between tutor and student. I put forward suggestions for how resistance to these new modes of disciplinary subjectification can be enacted.
Resumo:
The production rates of a range of low molecular weight halogenated organics have been determined in cultures of five temperate species of macroalgae collected from the north coast of Norfolk, England. Compounds studied included CH3Br, the chlorinated organics CH3Cl, CH2Cl2 and CHCl3, and the iodinated organics CH3I, C2H5I, and CH2ClI. Measurements of a wider range of halocarbon concentrations in an isolated rockpool and in air over the seaweed bed were also conducted to evaluate the local impact of the seaweeds on halocarbon concentrations in the natural environment. Estimates for the global emissions of some of the key halogenated compounds from macroalgae have been derived. In general macrophytes appear not to be globally significant producers of the particular halocarbons studied. In coastal regions, however, the impact on local atmospheric composition and chemistry could be greater.
Resumo:
The ACC is a climatically relevant frontal structure of global importance that regularly develops instabilities which grow into meanders that eventually evolve into long-lived cyclonic eddies. These eddies exhibit sustain primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean (SMILES) where we sampled and tracked an ACC meander as it developed into an eddy and later vanished some 90 days later. The meander and later eddy physical characteristics were observed with a combination of high resolution hydrography, ADCP and turbulence observations in addition to surface and depth resolved biogeochemical observations of nutrients and phytoplankton. The life and death of the eddy was subsequently tracked through ARGO, BIO-ARGO and remote sensing.
Resumo:
Liquid-liquid equilibria of two ternary mixtures 2M1B-2M1BOH-H[2]O] and 2M2B-2M1BOH-H[2]O were measured at 5, 15 and 25 C. UNIQUAC and NRTL models were fitted to the experimental data using ASPEN PLUS. Both experimental and correlated values of equilibrium compositions were compared with the values predicted by UNIFAC method. The same procedure was extended to the quaternary mixture 2M1B-2M2B-2M 1BOH-H[2]O. The regressed results were in good agreements with experimental data. Original UNIFAC model performed better representation than Dortmund UNIFAC model.
Resumo:
The use of high-quality quarried crushed rock aggregates is generally required to comply with current specifications for unbound granular materials (UGMs) in pavements. The source of these high-quality materials can be a long distance from the site, resulting in high transportation costs. The use of more local sources of marginal materials or the use of secondary aggregates is not allowed if they do not fully comply with existing specifications. These materials can, however, be assessed for their suitability for use in a pavement by considering performance criteria such as resistance to permanent deformation and degradation instead of relying on compliance with inflexible specifications. The final thickness of the asphalt cover and the pavement depth are governed by conventional pavement design methods, which consider the number of vehicle passes, subgrade strength, and some material property, commonly the California bearing ratio or resilient modulus. A pavement design method that includes as a design criterion an assessment of the resistance to deformation of a UGM in a pavement structure at a particular stress state is proposed. The particular stress state at which the aggregate is to perform in an acceptable way is related to the in situ stress, that is, the stress that the aggregate is anticipated to experience at a particular depth in the pavement. Because the stresses are more severe closer to the pavement surface, the aggregates should be better able to resist these stresses the closer they are laid to the surface in the pavement. This method was applied to two Northern Ireland aggregates of different quality (NI Good and NI Poor). The results showed that the NI Poor aggregate performed at an acceptable level with respect to permanent deformation, provided that a minimum of 70 mm of asphalt cover was provided. It was predicted that the NI Good material would require 60 mm of asphalt cover.
Resumo:
Previous Call K observations of the B-type star HD 83206 have revealed putative high-velocity interstellar clouds (HVCs) at Local Standard of Rest (LSR) velocities of -80 and -110 km s(- 1). Similar results were also found for the sightline towards HD135485. In this article, we show that these absorption lines are in fact due tr, stellar SII features. As the Call K absorption line in B-type stars is often used to assess the presence and distance of HVCs. we also present a very high quality spectrum of HD 83206 in the Ca II K region (similar to+/-4 Angstrom or +/-300 km s(-1)), so that in the future confusion between stellar lines and HVC features may be avoided.
Resumo:
We present Westerbork Synthesis Radio Telescope HI images, Lovell telescope multibeam H I wide-field mapping, William Herschel Telescope long-slit echelle Ca II observations, Wisconsin Halpha Mapper (WHAM) facility images, and IRAS ISSA 60- and 100-mum co-added images towards the intermediate- velocity cloud (IVC) at + 70 km s(-1), located in the general direction of the M15 globular cluster. When combined with previously published Arecibo data, the H I gas in the IVC is found to be clumpy, with a peak H I column density of similar to1.5 x 10(20) cm(-2), inferred volume density (assuming spherical symmetry) of similar to24 cm(-3)/D (kpc) and a maximum brightness temperature at a resolution of 81 x 14 arcsec(2) of 14 K. The major axis of this part of the IVC lies approximately parallel to the Galactic plane, as does the low- velocity H I gas and IRAS emission. The H I gas in the cloud is warm, with a minimum value of the full width at half-maximum velocity width of 5 km s(-1) corresponding to a kinetic temperature, in the absence of turbulence, of similar to540 K. From the H I data, there are indications of two-component velocity structure. Similarly, the Ca II spectra, of resolution 7 km s(-1), also show tentative evidence of velocity structure, perhaps indicative of cloudlets. Assuming that there are no unresolved narrow-velocity components, the mean values of log(10)[N(Ca II K) cm(2)] similar to 12.0 and Ca II/H I similar to2 5 x 10(-8) are typical of observations of high Galactic latitude clouds. This compares with a value of Ca II/H I>10(-6) for IVC absorption towards HD 203664, a halo star of distance 3 kpc, some 3.degrees1 from the main M15 IVC condensation. The main IVC condensation is detected by WHAM in Halpha with central local-standard-of-rest velocities of similar to60-70 km s(-1), and intensities uncorrected for Galactic extinction of up to 1.3 R, indicating that the gas is partially ionized. The FWHM values of the Halpha IVC component, at a resolution of 1degrees, exceed 30 km s(-1). This is some 10 km s(-1) larger than the corresponding H I value at a similar resolution, and indicates that the two components may not be mixed. However, the spatial and velocity coincidence of the Halpha and H I peaks in emission towards the main IVC component is qualitatively good. If the Halpha emission is caused solely by photoionization, the Lyman continuum flux towards the main IVC condensation is similar to2.7 x 10(6) photon cm(-2) s(-1). There is not a corresponding IVC Halpha detection towards the halo star HD 203664 at velocities exceeding similar to60 km s(- 1). Finally, both the 60- and 100-mum IRAS images show spatial coincidence, over a 0.675 x 0 625 deg(2) field, with both low- and intermediate-velocity H I gas (previously observed with the Arecibo telescope), indicating that the IVC may contain dust. Both the Halpha and tentative IRAS detections discriminate this IVC from high-velocity clouds, although the H I properties do not. When combined with the H I and optical results, these data point to a Galactic origin for at least parts of this IVC.