918 resultados para Linear multiobjective optimization
Resumo:
The design optimization of laminated composites using naturally inspired optimization techniques such as vector evaluated particle swarm optimization (VEPSO) and genetic algorithms (GA) are used in this paper. The design optimization of minimum weight of the laminated composite is evaluated using different failure criteria. The failure criteria considered are maximum stress (MS), Tsai-Wu (TW) and failure mechanism based (FMB) failure criteria. Minimum weight of the laminates are obtained for different failure criteria using VEPSO and GA for different combinations of loading. From the study it is evident that VEPSO and GA predict almost the same minimum weight of the laminate for the given loading. Comparison of minimum weight of the laminates by different failure criteria differ for some loading combinations. The comparison shows that FMBFC provide better results for all combinations of loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a dual of a given linear fractional program is defined and the weak, direct and converse duality theorems are proved. Both the primal and the dual are linear fractional programs. This duality theory leads to necessary and sufficient conditions for the optimality of a given feasible solution. A unmerical example is presented to illustrate the theory in this connection. The equivalence of Charnes and Cooper dual and Dinkelbach’s parametric dual of a linear fractional program is also established.
Resumo:
A method to obtain a nonnegative integral solution of a system of linear equations, if such a solution exists is given. The method writes linear equations as an integer programming problem and then solves the problem using a combination of artificial basis technique and a method of integer forms.
Resumo:
A simple but efficient algorithm is presented for linear programming. The algorithm computes the projection matrix exactly once throughout the computation unlike that of Karmarkar’s algorithm where in the projection matrix is computed at each and every iteration. The algorithm is best suitable to be implemented on a parallel architecture. Complexity of the algorithm is being studied.
Resumo:
Details of an efficient optimal closed-loop guidance algorithm for a three-dimensional launch are presented with simulation results. Two types of orbital injections, with either true anomaly or argument of perigee being free at injection, are considered. The resulting steering-angle profile under the assumption of uniform gravity lies in a canted plane which transforms a three-dimensional problem into an equivalent two-dimensional one. Effects of thrust are estimated using a series in a recursive way. Encke's method is used to predict the trajectory during powered flight and then to compute the changes due to actual gravity using two gravity-related vectors. Guidance parameters are evaluated using the linear differential correction method. Optimality of the algorithm is tested against a standard ground-based trajectory optimization package. The performance of the algorithm is tested for accuracy, robustness, and efficiency for a sun-synchronous mission involving guidance for a multistage vehicle that requires large pitch and yaw maneuver. To demonstrate applicability of the algorithm to a range of missions, injection into a geostationary transfer orbit is also considered. The performance of the present algorithm is found to be much better than others.
Resumo:
This paper is devoted to the improvement of the measuring range of inverted V-notch (IVN) weir, a practical linear sharp-crested weir, designed earlier by the writers. The range of linearity of IVN can be considerably enhanced (by more than 200%) by the addition of a retangular weir of width 0.265W (W = half crest width) at a depth of 0.735d (d = altitude of IVN), above the crest of the weir, which is equivalent to providing at this depth two vertical straight lines to the IVN, resulting in a chimney-shaped profile; hence, the modified weir is named chimney weir. The design parameters of the weir, that is, the linearity range, base flow depth, and datum constant, which fixes the reference plane of the weir, are estimated by solving the nonlinear programming problem using a numerical optimization procedure. For flows through this weir above a depth of 0.22d, the discharges are proportional to the depth of flow measured above a reference plane situated at 0.08d above the weir crest for all heads in the range 0.22d <= h <= 2.43d, within a maximum percentage deviation of ±1.5 from the theoretical discharge. A significant result of the analysis is that the same linear head-discharge relationship governing the flow through the IVN is also valid for the extended chimney weir. Experiments with three different chimney weirs show excellent agreement with the theory by giving a constant average coefficient of discharge for each weir.
Resumo:
A simple and efficient algorithm for the bandwidth reduction of sparse symmetric matrices is proposed. It involves column-row permutations and is well-suited to map onto the linear array topology of the SIMD architectures. The efficiency of the algorithm is compared with the other existing algorithms. The interconnectivity and the memory requirement of the linear array are discussed and the complexity of its layout area is derived. The parallel version of the algorithm mapped onto the linear array is then introduced and is explained with the help of an example. The optimality of the parallel algorithm is proved by deriving the time complexities of the algorithm on a single processor and the linear array.
Resumo:
This paper reports on the numerical study of the linear stability of laminar premixed flames under zero gravity. The study specifically addresses the dependence of stability on finite rate chemistry with low activation energy and variable thermodynamic and transport properties. The calculations show that activation energy and details of chemistry play a minor role in altering the linear neutral stability results from asymptotic analysis. Variable specific heat makes a marginal change to the stability. Variable transport properties on the other hand tend to substantially enhance the stability from critical wave number of about 0.5 to 0.20. Also, it appears that the effects of variable properties tend to nullify the effects of non-unity Lewis number. When the Lewis number of a single species is different from unity, as will happen in a hydrogen-air premixed flame, the stability results remain close to that of unity Lewis number.
Resumo:
We study the problem of finding a set of constraints of minimum cardinality which when relaxed in an infeasible linear program, make it feasible. We show the problem is NP-hard even when the constraint matrix is totally unimodular and prove polynomial-time solvability when the constraint matrix and the right-hand-side together form a totally unimodular matrix.
Resumo:
This study addresses the challenge of analyzing interruption in spoken interaction. It begins with my observation of eight hours of academic group work among speakers of English as a lingua franca (ELF) in a university course. Unlike the common findings of ELF research which underscore the cooperative orientation of ELF users, this particular group gave strong impressions of interruption and uncooperativeness as they prepared a scientific group presentation. In the effort to investigate these impressions, I found that no satisfactory method exists for systematically identifying and analyzing interruptions. A useful tool was found in Linear Unit Grammar or LUG (Sinclair & Mauranen 2006), which analyzes spoken interaction prospectively as linear text. In the course of transcribing one of the early group work meetings, I developed a model of LUG-based criteria for identifying individual instances of interruption. With this system in place, I was then able to evaluate the aggregate occurrences of interruption in the group work and identify co-occurring interactive features which further influenced the perception of uncooperativeness. Finally, these aggregate statistics directed a return to the data and a contextually sensitive, qualitative analysis. This research cycle illuminates the interactive features which contributed to my own impressions of uncooperativeness, as well as the group members orientations to their own interruptive practice.
Resumo:
Non-linear resistors having current-limiting capabilities at lower field strengths, and voltage-limiting characteristics (varistors) at higher field strengths, were prepared from sintered polycrystalline ceramics of (Ba0.6Sr0.4)(Ti0.97Zr0.03)O3+0.3 at % La, and reannealed after painting with low-melting mixtures of Bi2O3 + PbO +B2O3. These types of non-linear characteristics were found to depend upon the non-uniform diffusion of lead and the consequent distribution of Curie points (T c) in these perovskites, resulting in diffuse phase transitions. Tunnelling of electrons across the asymmetric barrier at tetragonak-cubic interfaces changes to tunnelling across the symmetric barrier as the cubic phase is fully stabilized through Joule heating at high field strengths. Therefore the current-limiting characteristics switch over to voltage-limiting behaviour because tunnelling to acceptor-type mid-bandgap states gives way to band-to-band tunnelling.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
Clustered VLIW architectures solve the scalability problem associated with flat VLIW architectures by partitioning the register file and connecting only a subset of the functional units to a register file. However, inter-cluster communication in clustered architectures leads to increased leakage in functional components and a high number of register accesses. In this paper, we propose compiler scheduling algorithms targeting two previously ignored power-hungry components in clustered VLIW architectures, viz., instruction decoder and register file. We consider a split decoder design and propose a new energy-aware instruction scheduling algorithm that provides 14.5% and 17.3% benefit in the decoder power consumption on an average over a purely hardware based scheme in the context of 2-clustered and 4-clustered VLIW machines. In the case of register files, we propose two new scheduling algorithms that exploit limited register snooping capability to reduce extra register file accesses. The proposed algorithms reduce register file power consumption on an average by 6.85% and 11.90% (10.39% and 17.78%), respectively, along with performance improvement of 4.81% and 5.34% (9.39% and 11.16%) over a traditional greedy algorithm for 2-clustered (4-clustered) VLIW machine. (C) 2010 Elsevier B.V. All rights reserved.