970 resultados para Linear feedback control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the nonlinear analog of the Fake Riccati equation developed for linear systems, we derive an inverse optimality result for several receding-horizon control schemes. This inverse optimality result unifies stability proofs and shows that receding-horizon control possesses the stability margins of optimal control laws. © 1997 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this book several streams of nonlinear control theory are merged and di- rected towards a constructive solution of the feedback stabilization problem. Analytic, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Di®erential-geometric concepts reveal important structural properties of nonlinear systems, but al- low no margin for modeling errors. To overcome this de¯ciency, we combine them with analytic concepts of passivity, optimality and Lyapunov stability. In this way geometry serves as a guide for construction of design procedures, while analysis provides robustness tools which geometry lacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delivering acceptable low end torque and good transient response is a significant challenge for all turbocharged engines. As downsized gasoline engines and Diesel engines make up a larger and larger proportion of the light-duty engines entering the market, the issue takes on greater significance. Several schemes have been proposed to improve torque response in highly boosted engines, including the use of electrical assist turbochargers and compressed air assist. In this paper we examine these methods with respect to their effectiveness in improving transient response and their relative performance along with some of the practical considerations for real world application. Results shown in this paper are from 1-D simulations using the Ricardo WAVE software package. The simulation model is based on a production light-duty Diesel engine modified to allow the introduction of compressed air at various points in the air-path as well as direct torque application to the turbocharger shaft (such as might be available from an electrical assist turbocharger). Whilst the 1-D simulation software provides a suitable environment for investigating the various boost assistance options, the overall air path performance also depends upon the control system. The introduction of boost assistance complicates the control in two significant ways: the system may run into constraints (such as compressor surge) that are not encountered in normal operation and the assistance introduces an additional control input. Production engine controllers are usually based on gain-scheduled PID control and extensive calibration. For this study, the non-linear nature of the engine together with the multiple configurations considered and the slower than real-time execution of 1-D models makes such an approach time consuming. Moreover, an ad-hoc approach would leave some doubt as to the fairness of comparisons between the different boost-assist options. Model Predictive Control has been shown to offer a convenient approach to controlling the 1-D simulations in a close to optimal manner for a typical Diesel VGT-EGR air path configuration. We show that the same technique can be applied to all the considered assistance methods with only modest calibration effort required. Copyright © 2012 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper gives a new solution to the output feedback H2 model matching problem for a large class of delayed information sharing patterns. Existing methods for similar problems typically reduce the decentralized problem to a centralized problem of higher state dimension. In contrast, this paper demonstrates that the decentralized model matching solution can be constructed from the original centralized solution via quadratic programming. © 2013 AACC American Automatic Control Council.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical theorems in control theory are only of interest in so far as their assumptions relate to practical situations. The space of systems with transfer functions in ℋ∞, for example, has many advantages mathematically, but includes large classes of non-physical systems, and one must be careful in drawing inferences from results in that setting. Similarly, the graph topology has long been known to be the weakest, or coarsest, topology in which (1) feedback stability is a robust property (i.e. preserved in small neighbourhoods) and (2) the map from open-to-closed-loop transfer functions is continuous. However, it is not known whether continuity is a necessary part of this statement, or only required for the existing proofs. It is entirely possible that the answer depends on the underlying classes of systems used. The class of systems we concern ourselves with here is the set of systems that can be approximated, in the graph topology, by real rational transfer function matrices. That is, lumped parameter models, or those distributed systems for which it makes sense to use finite element methods. This is precisely the set of systems that have continuous frequency responses in the extended complex plane. For this class, we show that there is indeed a weaker topology; in which feedback stability is robust but for which the maps from open-to-closed-loop transfer functions are not necessarily continuous. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the relationship between the average wall number (N) and the diameter (d) for carbon nanotubes (CNTs) grown by chemical vapour deposition. It is found that N depends linearly on d for diameters in the range of 2.5-10 nm, while single wall nanotubes predominate for diameters under about 2.1 nm. The linear relationship is found to depend somewhat on the growth conditions. It is also verified that the mean diameter depends on the diameter of the originating catalyst nanoparticle, and thus on the initial catalyst thickness where a thin film catalyst is used. This simplifies the characterisation of CNTs by electron microscopy. We also find a linear relationship between nanotube diameter and initial catalyst film thickness. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell biology is characterised by low molecule numbers and coupled stochastic chemical reactions with intrinsic noise permeating and dominating the interactions between molecules. Recent work [9] has shown that in such environments there are hard limits on the accuracy with which molecular populations can be controlled and estimated. These limits are predicated on a continuous diffusion approximation of the target molecule (although the remainder of the system is non-linear and discrete). The principal result of [9] assumes that the birth rate of the signalling species is linearly dependent on the target molecule population size. In this paper, we investigate the situation when the entire system is kept discrete, and arbitrary non-linear coupling is allowed between the target molecule and downstream signalling molecules. In this case it is possible, by relying solely on the event triggered nature of control and signalling reactions, to define non-linear reaction rate modulation schemes that achieve improved performance in certain parameter regimes. These schemes would not appear to be biologically relevant, raising the question of what are an appropriate set of assumptions for obtaining biologically meaningful results. © 2013 EUCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous manoeuvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of manoeuvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet. © 2013 EUCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solution time of the online optimization problems inherent to Model Predictive Control (MPC) can become a critical limitation when working in embedded systems. One proposed approach to reduce the solution time is to split the optimization problem into a number of reduced order problems, solve such reduced order problems in parallel and selecting the solution which minimises a global cost function. This approach is known as Parallel MPC. The potential capabilities of disturbance rejection are introduced using a simulation example. The algorithm is implemented in a linearised model of a Boeing 747-200 under nominal flight conditions and with an induced wind disturbance. Under significant output disturbances Parallel MPC provides a significant improvement in performance when compared to Multiplexed MPC (MMPC) and Linear Quadratic Synchronous MPC (SMPC). © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is proposed for on-line reconfiguration of the terminal constraint used to provide theoretical nominal stability guarantees in linear model predictive control (MPC). By parameterising the terminal constraint, its complete reconstruction is avoided when input constraints are modified to accommodate faults. To enlarge the region of feasibility of the terminal control law for a certain class of input faults with redundantly actuated plants, the linear terminal controller is defined in terms of virtual commands. A suitable terminal cost weighting for the reconfigurable MPC is obtained by means of an upper bound on the cost for all feasible realisations of the virtual commands from the terminal controller. Conditions are proposed that guarantee feasibility recovery for a defined subset of faults. The proposed method is demonstrated by means of a numerical example. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.