900 resultados para Letting of contracts Queensland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Queensland Coal Industry Employees Health Scheme was implemented in 1993 to provide health surveillance for all Queensland coal industry workers. Tt1e government, mining employers and mining unions agreed that the scheme should operate for seven years. At the expiry of the scheme, an assessment of the contribution of health surveillance to meet coal industry needs would be an essential part of determining a future health surveillance program. This research project has analysed the data made available between 1993 and 1998. All current coal industry employees have had at least one health assessment. The project examined how the centralised nature of the Health Scheme benefits industry by identi~)jng key health issues and exploring their dimensions on a scale not possible by corporate based health surveillance programs. There is a body of evidence that indicates that health awareness - on the scale of the individual, the work group and the industry is not a part of the mining industry culture. There is also growing evidence that there is a need for this culture to change and that some change is in progress. One element of this changing culture is a growth in the interest by the individual and the community in information on health status and benchmarks that are reasonably attainable. This interest opens the way for health education which contains personal, community and occupational elements. An important element of such education is the data on mine site health status. This project examined the role of health surveillance in the coal mining industry as a tool for generating the necessary information to promote an interest in health awareness. The Health Scheme Database provides the material for the bulk of the analysis of this project. After a preliminary scan of the data set, more detailed analysis was undertaken on key health and related safety issues that include respiratory disorders, hearing loss and high blood pressure. The data set facilitates control for confounding factors such as age and smoking status. Mines can be benchmarked to identify those mines with effective health management and those with particular challenges. While the study has confirmed the very low prevalence of restrictive airway disease such as pneu"moconiosis, it has demonstrated a need to examine in detail the emergence of obstructive airway disease such as bronchitis and emphysema which may be a consequence of the increasing use of high dust longwall technology. The power of the Health Database's electronic data management is demonstrated by linking the health data to other data sets such as injury data that is collected by the Department of l\1mes and Energy. The analysis examines serious strain -sprain injuries and has identified a marked difference between the underground and open cut sectors of the industry. The analysis also considers productivity and OHS data to examine the extent to which there is correlation between any pairs ofJpese and previously analysed health parameters. This project has demonstrated that the current structure of the Coal Industry Employees Health Scheme has largely delivered to mines and effective health screening process. At the same time, the centralised nature of data collection and analysis has provided to the mines, the unions and the government substantial statistical cross-sectional data upon which strategies to more effectively manage health and relates safety issues can be based.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.