935 resultados para Leontief Input-Output model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strong climatic warming is currently observed in the Caucasus mountains, which has profound impact on runoff generation in the glaciated Glavny (Main) Range and on water availability in the whole region. To assess future changes in the hydrological cycle, the output of a general circulation model was downscaled statistically. For the 21st century, a further warming by 4–7 °C and a slight precipitation increase is predicted. Measured and simulated meteorological variables were used as input into a runoff model to transfer climate signals into a hydrological response under both present and future climate forcings. Runoff scenarios for the mid and the end of the 21st century were generated for different steps of deglaciation. The results show a satisfactory model performance for periods with observed runoff. Future water availability strongly depends on the velocity of glacier retreat. In a first phase, a surplus of water will increase flood risk in hot years and after continuing glacier reduction, annual runoff will again approximate current values. However, the seasonal distribution of streamflow will change towards runoff increase in spring and lower flows in summer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UKMeteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is underestimated (over-estimated) over wet (dry) regions of southern Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time-dependent climate-change experiment with a coupled ocean–atmosphere general circulation model has been used to study changes in the occurrence of drought in summer in southern Europe and central North America. In both regions, precipitation and soil moisture are reduced in a climate of greater atmospheric carbon dioxide. A detailed investigation of the hydrology of the model shows that the drying of the soil comes about through an increase in evaporation in winter and spring, caused by higher temperatures and reduced snow cover, and a decrease in the net input of water in summer. Evaporation is reduced in summer because of the drier soil, but the reduction in precipitation is larger. Three extreme statistics are used to define drought, namely the frequency of low summer precipitation, the occurrence of long dry spells, and the probability of dry soil. The last of these is arguably of the greatest practical importance, but since it is based on soil moisture, of which there are very few observations, the authors’ simulation of it has the least confidence. Furthermore, long time series for daily observed precipitation are not readily available from a sufficient number of stations to enable a thorough evaluation of the model simulation, especially for the frequency of long dry spells, and this increases the systematic uncertainty of the model predictions. All three drought statistics show marked increases owing to the sensitivity of extreme statistics to changes in their distributions. However, the greater likelihood of long dry spells is caused by a tendency in the character of daily rainfall toward fewer events, rather than by the reduction in mean precipitation. The results should not be taken as firm predictions because extreme statistics for small regions cannot be calculated reliably from the output of the current generation of GCMs, but they point to the possibility of large increases in the severity of drought conditions as a consequence of climate change caused by increased CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken apart from a single Guidance Note (GN5, RICS 2003) stressing the importance of recognising uncertainty in valuation but not proffering any particular solution. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valuation is the process of estimating price. The methods used to determine value attempt to model the thought processes of the market and thus estimate price by reference to observed historic data. This can be done using either an explicit model, that models the worth calculation of the most likely bidder, or an implicit model, that that uses historic data suitably adjusted as a short cut to determine value by reference to previous similar sales. The former is generally referred to as the Discounted Cash Flow (DCF) model and the latter as the capitalisation (or All Risk Yield) model. However, regardless of the technique used, the valuation will be affected by uncertainties. Uncertainty in the comparable data available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the estimate of price. In a previous paper, we have considered the way in which uncertainty is allowed for in the capitalisation model in the UK. In this paper, we extend the analysis to look at the way in which uncertainty can be incorporated into the explicit DCF model. This is done by recognising that the input variables are uncertain and will have a probability distribution pertaining to each of them. Thus buy utilising a probability-based valuation model (using Crystal Ball) it is possible to incorporate uncertainty into the analysis and address the shortcomings of the current model. Although the capitalisation model is discussed, the paper concentrates upon the application of Crystal Ball to the Discounted Cash Flow approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instru- ments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly- averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim  We provide a new quantitative analysis of lizard reproductive ecology. Comparative studies of lizard reproduction to date have usually considered life-history components separately. Instead, we examine the rate of production (productivity hereafter) calculated as the total mass of offspring produced in a year. We test whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environmental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location  World-wide. Methods  We assembled a database containing 551 lizard species, their phylogenetic relationships and multiple life history and ecological variables from the literature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results  Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. Island species were less productive than continental species. Mass-specific productivity was positively correlated with environmental temperature, but not with body temperature. Viviparous lizards were less productive than egg-laying species. Diet and primary productivity were not associated with productivity in any model. Other effects, including lower productivity of fossorial, nocturnal and active foraging species were confounded with phylogeny. Productivity was not lower in species at risk of extinction. Main conclusions  Our analyses show the value of focusing on the rate of annual biomass production (productivity), and generally supported associations between productivity and environmental temperature, factors that affect mortality and the number of broods a lizard can produce in a year, but not with measures of body temperature, environmental productivity or diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate the effect of choices of model structure and scale in development viability appraisal. The paper addresses two questions concerning the application of development appraisal techniques to viability modelling within the UK planning system. The first relates to the extent to which, given intrinsic input uncertainty, the choice of model structure significantly affects model outputs. The second concerns the extent to which, given intrinsic input uncertainty, the level of model complexity significantly affects model outputs. Design/methodology/approach – Monte Carlo simulation procedures are applied to a hypothetical development scheme in order to measure the effects of model aggregation and structure on model output variance. Findings – It is concluded that, given the particular scheme modelled and unavoidably subjective assumptions of input variance, that simple and simplistic models may produce similar outputs to more robust and disaggregated models. Evidence is found of equifinality in the outputs of a simple, aggregated model of development viability relative to more complex, disaggregated models. Originality/value – Development viability appraisal has become increasingly important in the planning system. Consequently, the theory, application and outputs from development appraisal are under intense scrutiny from a wide range of users. However, there has been very little published evaluation of viability models. This paper contributes to the limited literature in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The requirement to forecast volcanic ash concentrations was amplified as a response to the 2010 Eyjafjallajökull eruption when ash safety limits for aviation were introduced in the European area. The ability to provide accurate quantitative forecasts relies to a large extent on the source term which is the emissions of ash as a function of time and height. This study presents source term estimations of the ash emissions from the Eyjafjallajökull eruption derived with an inversion algorithm which constrains modeled ash emissions with satellite observations of volcanic ash. The algorithm is tested with input from two different dispersion models, run on three different meteorological input data sets. The results are robust to which dispersion model and meteorological data are used. Modeled ash concentrations are compared quantitatively to independent measurements from three different research aircraft and one surface measurement station. These comparisons show that the models perform reasonably well in simulating the ash concentrations, and simulations using the source term obtained from the inversion are in overall better agreement with the observations (rank correlation = 0.55, Figure of Merit in Time (FMT) = 25–46%) than simulations using simplified source terms (rank correlation = 0.21, FMT = 20–35%). The vertical structures of the modeled ash clouds mostly agree with lidar observations, and the modeled ash particle size distributions agree reasonably well with observed size distributions. There are occasionally large differences between simulations but the model mean usually outperforms any individual model. The results emphasize the benefits of using an ensemble-based forecast for improved quantification of uncertainties in future ash crises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effect of choices of model structure and scale in development viability appraisal. The paper addresses two questions concerning the application of development appraisal techniques to viability modelling within the UK planning system. The first relates to the extent to which, given intrinsic input uncertainty, the choice of model structure significantly affects model outputs. The second concerns the extent to which, given intrinsic input uncertainty, the level of model complexity significantly affects model outputs. Monte Carlo simulation procedures are applied to a hypothetical development scheme in order to measure the effects of model aggregation and structure on model output variance. It is concluded that, given the particular scheme modelled and unavoidably subjective assumptions of input variance, that simple and simplistic models may produce similar outputs to more robust and disaggregated models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.