1000 resultados para Leishmania vaccine
Resumo:
Vaccinia virus (VACV) encodes an anti-apoptotic Bcl-2-like protein F1 that acts as an inhibitor of caspase-9 and of the Bak/Bax checkpoint but the role of this gene in immune responses is not known. Because dendritic cells that have phagocytosed apoptotic infected cells cross-present viral antigens to cytotoxic T cells inducing an antigen-specific immunity, we hypothesized that deletion of the viral anti-apoptotic F1L gene might have a profound effect on the capacity of poxvirus vectors to activate specific immune responses to virus-expressed recombinant antigens. This has been tested in a mouse model with an F1L deletion mutant of the HIV/AIDS vaccine candidate MVA-C that expresses Env and Gag-Pol-Nef antigens (MVA-C-ΔF1L). The viral gene F1L is not required for virus replication in cultured cells and its deletion in MVA-C induces extensive apoptosis and expression of immunomodulatory genes in infected cells. Analysis of the immune responses induced in BALB/c mice after DNA prime/MVA boost revealed that, in comparison with parental MVA-C, the mutant MVA-C-ΔF1L improves the magnitude of the HIV-1-specific CD8 T cell adaptive immune responses and impacts on the CD8 T cell memory phase by enhancing the magnitude of the response, reducing the contraction phase and changing the memory differentiation pattern. These findings reveal the immunomodulatory role of F1L and that the loss of this gene is a valid strategy for the optimization of MVA as vaccine vector.
Resumo:
Infection with Leishmania major parasites results in the development of cutaneous ulcerative lesions on the skin. We investigated the protective potential of a single, recombinant histone H1 antigen against cutaneous leishmaniasis in an outbred population of vervet monkeys, using Montanide adjuvant. Protection was assessed by challenging the animals with a mixture of vector sand fly salivary-gland lysate and a low dose of in vitro-derived parasites, thus more closely mimicking natural infection induced by L. major. The course of infection in immunized monkeys was compared with that of animals that had healed from a primary infection and were immune. The monkeys immunized with recombinant histone H1 showed a reduced development of lesion size, compared with controls. Our study therefore illustrates the potential use of histone H1 as a vaccine candidate against cutaneous leishmaniasis in humans.
Resumo:
NYVAC-C (vP2010), a recombinant vector expressing HIV subtype C gag, pol, env and nef antigens, was tested in a phase I study in healthy, HIV negative volunteers in London and Lausanne. Twenty-four participants were randomised to receive NYVAC-C (20) or matching placebo (4) at weeks 0 and 4, and assessed for safety and immunogenicity over 48 weeks. There were no serious adverse events, and no clinical or laboratory abnormalities or other events that led to withdrawal, interruption or dose reduction of the NYVAC-C/placebo. Half of the 10 assessed responded in the ELISpot assay under stringent criteria, which informed the sample size for a DNA-NYVAC-C comparison to NYVAC-C alone.
Resumo:
A large variety of cancer vaccines have undergone extensive testing in early-phase clinical trials. A limited number have also been tested in randomized phase II clinical trials. Encouraging trends toward increased survival in the vaccine arms have been recently observed for 2 vaccine candidates in patients with non-small-cell lung cancer. These have provided the impetus for the initiation of phase III trials in large groups of patients with lung cancer. These vaccines target 2 antigens widely expressed in lung carcinomas: melanoma-associated antigen 3, a cancer testis antigen; and mucin 1, an antigen overexpressed in a largely deglycosylated form in advanced tumors. Therapeutic cancer vaccines aim at inducing strong CD8 and CD4 T-cell responses. The majority of vaccines recently tested in phase I clinical trials show efficacy in terms of induction of specific tumor antigen immunity. However, clinical efficacy remains to be determined but appears limited. Efforts are thus aimed at understanding the basis for this apparent lack of effect on tumors. Two major factors are involved. On one hand, current vaccines are suboptimal. Strong adjuvant agents and appropriate tumor antigens are needed. Moreover, dose, route, and schedule also need optimization. On the other hand, it is now clear that large tumors often present a tolerogenic microenvironment that hampers effective antitumor immunity. The partial understanding of the molecular pathways leading to functional inactivation of T cells at tumor sites has provided new targets for intervention. In this regard, blockade of cytotoxic T-lymphocyte antigen-4 and programmed death-1 with humanized monoclonal antibodies has reached the clinical testing stage. In the future, more potent cancer vaccines will benefit from intense research in antigen discovery and adjuvant agents. Furthermore, it is likely that vaccines need to be combined with compounds that reverse major tolerogenic pathways that are constitutively active at the tumor site. Developing these combined approaches to vaccination in cancer promises new, exciting findings and, at the same time, poses important challenges to academic research institutions and the pharmaceutical industry.
Resumo:
Resolution of lesions induced by Leishmania major in mice results from the development of Th1 responses. Cytokines produced by Th1 cells activate macrophages to a parasiticidal state. The development of Th2 responses in mice from a few strains underlies susceptibility to infection. Cytokines produced by Th2 cells exacerbate the development of lesions because of their deactivating properties for macrophages. This murine model of infection has provided significant insight into the mechanisms intrinsic to the differentiation of disparate CD4+ T cell subsets in vivo in animals from different genetic backgrounds.
Resumo:
Immunity to infection with intracellular pathogens is regulated by interleukin 12 (IL-12), which mediates protective T helper type 1 (TH1) responses, or IL-4, which induces TH2 cells and susceptibility. Paradoxically, we show here that when present during the initial activation of dendritic cells (DCs) by infectious agents, IL-4 instructed DCs to produce IL-12 and promote TH1 development. This TH1 response established resistance to Leishmania major in susceptible BALB/c mice. When present later, during the period of T cell priming, IL-4 induced TH2 differentiation and progressive leishmaniasis in resistant mice. Because immune responses developed via the consecutive activation of DCs and then T cells, the contrasting effects of IL-4 on DC development and T cell differentiation led to immune responses that had opposing functional phenotypes.
Resumo:
Although bacteremic pneumococcal pneumonia is the most severe form of pneumonia, non-bacteremic forms are much more frequent. Laboratory methods for the diagnosis of nonbacteremic pneumococcal pneumonia have a low sensitivity and specificity, and therefore all-cause pneumonia has been proposed as a suitable outcome to evaluate vaccination effectiveness. This work reviews the epidemiology of community-acquired pneumonia (CAP) and evaluates the effectiveness of the 3-valent pneumococcal polysaccharide vaccine (PPV-23) in preventing CAP requiring hospitalization in people aged ≥65 years. We performed a case-control study in patients aged ≥65 years admitted through the emergency department who presented with clinical signs and symptoms compatible with pneumonia. Weincluded 489 cases and 1,467 controls and it was obtained a vaccine efectiveness of 23.6 (0.9-41.0). Our results suggest that PPV-23 vaccination is effective and reduces hospital admissions due to pneumonia in the elderly, strengthening the rationale for vaccination programmes in this age group.
Resumo:
Susceptibility and development of Th2 cells in BALB/c mice infected with Leishmania major result from early IL-4 production by Vbeta4Valpha8 CD4+ T cells in response to the Leishmania homolog of mammalian RACK1 Ag. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. We further showed that transfer of 10(7) BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10(7) control BALB/c spleen cells were resistant to infection with L. major and developed a Th1 response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.
Resumo:
The possible immunomodulatory role of polymorphonuclear leukocytes (PMN) in CD4+ T lymphocyte differentiation in mice was examined by studying the effect of transient depletion of PMN during the early phase after Leishmania major delivery. A single injection of the PMN-depleting NIMP-R14 mAb 6 h before infection with L. major prevented the early burst of IL-4 mRNA transcription otherwise occurring in the draining lymph node of susceptible BALB/c mice. Since this early burst of IL-4 mRNA transcripts had previously been shown to instruct Th2 differentiation in mice from this strain, we examined the effect of PMN depletion on Th subset differentiation at later time points after infection. The transient depletion of PMN in BALB/c mice was sufficient to inhibit Th2 cell development otherwise occurring after L. major infection. Decreased Th2 responses were paralleled with partial resolution of the footpad lesions induced by L. major. Furthermore, draining lymph node-derived CD4+ T cells from PMN-depleted mice remained responsive to IL-12 after L. major infection, unlike those of infected BALB/c mice receiving control Ab. PMN depletion had no effect when the NIMP-R14 mAb was injected 24 h postinfection. The protective effect of PMN depletion was shown to be IL-12 dependent, as concomitant neutralization of IL-12 reversed the protective effect of PMN depletion. These results suggest a role for an early wave of PMN in the development of the Th2 response characteristic of mice susceptible to infection with L. major.
Resumo:
Background: This trial was conducted to evaluate the safety and immunogenicity of two virosome formulated malaria peptidomimetics derived from Plasmodium falciparum AMA-1 and CSP in malaria semi-immune adults and children.Methods: The design was a prospective randomized, double-blind, controlled, age-deescalating study with two immunizations. 10 adults and 40 children (aged 5-9 years) living in a malaria endemic area were immunized with PEV3B or virosomal influenza vaccine Inflexal (R) V on day 0 and 90.Results: No serious or severe adverse events (AEs) related to the vaccines were observed. The only local solicited AE reported was pain at injection site, which affected more children in the Inflexal (R) V group compared to the PEV3B group (p = 0.014). In the PEV3B group, IgG ELISA endpoint titers specific for the AMA-1 and CSP peptide antigens were significantly higher for most time points compared to the Inflexal (R) V control group. Across all time points after first immunization the average ratio of endpoint titers to baseline values in PEV3B subjects ranged from 4 to 15 in adults and from 4 to 66 in children. As an exploratory outcome, we found that the incidence rate of clinical malaria episodes in children vaccinees was half the rate of the control children between study days 30 and 365 (0.0035 episodes per day at risk for PEV3B vs. 0.0069 for Inflexal (R) V; RR = 0.50 [95%-CI: 0.29-0.88], p = 0.02).Conclusion: These findings provide a strong basis for the further development of multivalent virosomal malaria peptide vaccines.
Resumo:
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Resumo:
BACKGROUND: Human immunodeficiency virus (HIV)-infected children are at increased risk of infections caused by vaccine preventable pathogens, and specific immunization recommendations have been issued. METHODS: A prospective national multicenter study assessed how these recommendations are followed in Switzerland and how immunization history correlates with vaccine immunity. RESULTS: Among 87 HIV-infected children (mean age: 11.1 years) followed in the 5 Swiss university hospitals and 1 regional hospital, most (76%) had CD4 T cells >25%, were receiving highly active antiretroviral treatment (79%) and had undetectable viral load (60%). Immunization coverage was lower than in the general population and many lacked serum antibodies to vaccine-preventable pathogens, including measles (54%), varicella (39%), and hepatitis B (65%). The presence of vaccine antibodies correlated most significantly with having an up-to-date immunization history (P<0.05). An up-to-date immunization history was not related to age, immunologic stage, or viremia but to the referral medical center. CONCLUSIONS: All pediatricians in charge of HIV-infected children are urged to identify missing immunizations in this high-risk population.
Resumo:
Cutaneous Leishmaniasis (CL) caused by Leishmania aethiopica is a public health and social problem with a sequel of severe and mutilating skin lesions. It is manifested in three forms: localized CL (LCL), mucosal CL (MCL) and diffuse CL (DCL). Unresponsiveness to sodium stibogluconate (Sb(V)) is common in Ethiopian CL patients. Using the amastigote-macrophage in vitro model the susceptibility of 24 clinical isolates of L. aethiopica derived from untreated patients was investigated. Eight strains of LCL, 9 of MCL, and 7 of DCL patients together with a reference strain (MHOM/ET/82/117/82) were tested against four antileishmanial drugs: amphotericin B, miltefosine, Sb(V) and paromomycin. In the same order of drugs, IC(50) (μg/ml±SD) values for the 24 strains tested were 0.16±0.18, 5.88±4.79, 10.23±8.12, and 13.63±18.74. The susceptibility threshold of isolates originating from the 3 categories of patients to all 4 drugs was not different (p>0.05). Maximal efficacy was superior for miltefosine across all the strains. Further susceptibility test could validate miltefosine as a potential alternative drug in cases of sodium stibogluconate treatment failure in CL patients.
Resumo:
Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titres (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotypes 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7-20-27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants.