965 resultados para Laser Induced Fluorescence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of a laser-accelerated micron-size projectile on a dense plasma target is studied using two-dimensional particle-in-cell simulations. The projectile is first accelerated by an ultraintense laser. It then impinges on the dense plasma target and merges with the latter. Part of the kinetic energy of the laser-accelerated ions in the projectile is deposited in the fused target, and an extremely high concentration of plasma ions with a mean kinetic energy needed for fusion reaction is induced. The interaction is thus useful for laser-driven impact fusion and as a compact neutron source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. There remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear spectroscopy of cold atoms in the diffuse laser cooling system is studied in this paper. We present the theoretical models of the recoil-induced resonances (RIR) and the electromagnetically-induced absorption (EIA) of cold atoms in diffuse laser light, and show their signals in an experiment of cooling Rb-87 atomic vapor in an integrating sphere. The theoretical results are in good agreement with the experimental ones when the light intensity distribution in the integrating sphere is considered. The differences between nonlinear spectra of cold atoms in the diffuse laser light and in the optical molasses are also discussed. (c) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.

Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.

The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.

The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are achieved in the 5 mol % MgO-doped congruent LiNbO3 crystals. The reduction proportion increases exponentially with decreasing irradiation wavelength and decreases exponentially with increasing irradiation wavelength. At one given wavelength, the reduction proportion increases exponentially with increasing irradiation intensity. An assumption is proposed that the reduction of nucleation field is directly related to the defect structure of crystal lattice generated by the complex coaction of incident irradiation field and external electric field. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single-layer and multilayer Sb-rich AgInSbTe films were irradiated by a single femtosecond laser pulse with the duration of 120 fs. The morphological feature resulting from the laser irradiation have been investigated by scanning electron microscopy and atom force microscopy. For the single-layer film, the center of the irradiated spot is a dark depression and the border is a bright protrusion; however, for the multilayer film, the center morphology changes from a depression to a protrusion as the energy increases. The crystallization threshold fluence of the single-layer and the multilayer films is 46.36 mJ/cm(2), 63.74 mJ/cm(2), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

研究了两种新型芴类衍生物9,9-二(2-乙基已基)-2,7-二咔唑-9H-芴(简记为DCZF)和9,9-二(2-乙基已基)-2,7-二(2-(4-甲氧基)苯-2,1-乙烯基)芴(简记为BMOSF)在N,N-二甲基甲酰胺(DMF)中的线性吸收和单光子荧光行为,并用脉冲宽度为38ps,重复频率为10Hz的1064 nm Nd:YAG脉冲激光研究了两种化合物的三光子吸收性质.结果表明:两种新材料的最大线性吸收峰分别位于330和380nm,吸收区域覆盖了270-420nm波段.两种化合物的荧光带位于蓝-紫区,中心

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a configuration of optical far-field scanning microscopy, super-resolution achieved by inserting a third-order optical nonlinear thin film is demonstrated and analyzed in terms of the frequency response function. Without the thin film the microscopy is diffraction limited; thus, subwavelength features cannot be resolved. With the nonlinear thin film inserted, the resolution is dramatically improved and thus the microscopy resolves features significantly smaller than the smallest spacing allowed by the diffraction limit. A theoretical model is established and the device is analyzed for the frequency response function. The results show that the frequency response function exceeds the cutoff spatial frequency of the microscopy defined by the laser wavelength and the numerical aperture of the convergent lens. The main contribution to the improvement of the cutoff spatial frequency is from the phase change induced by the complex transmission of the nonlinear thin film. Experimental results are presented and are shown to be consistent with the results of theoretical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AgInSbTelSi thin films on glass substrates are prepared by dc magnetron sputtering at room temperature. Using Si underlayer as the thermal diffusion layer, the super-resolution nano-ablation holes with a size of 70nm in the AgInSbTe phase change films are obtained by a far-field focused laser experimental setup, with laser wavelength 405nm and objective-lens numerical aperture 0.90. The nano-ablation formation mechanism is analysed and discussed via the thermal diffusion of sample structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel laser resonator for compensating depolarization loss that is due to thermally induced birefringence in active rod is reported. As this new structure being applied to an electro-optic Q-switched LIDA side-pumped Nd:YAG laser operating at a repetition rate of 1000 Hz, substantial reduction in depolarization loss has been observed, the output pulse energy is improved about 56% from that of a traditional resonator without compensation structure. With incident pump energy of 450 mJ per pulse, linearly polarized output energy of 30 mJ per pulse is achieved, the pulse duration is less than 15 ns, and the peak power of pulse is about 2 MW. The extinction ratio of laser beam is better than 10:1, and the beam divergence is 1.3 mrad with beam diameter of around 2.5 mm. (c) 2006 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of F- ions in Yb3+-doped tellurite glass systems on the emission cross-section and measured fluorescence lifetime are investigated. The results show that both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase from 1.32 to 1.39 pm(2) and from 0.93 to 1.12 ms respectively with the increase of F- ions from 0 to 10 mol% and that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and the change of OH- groups in this glass system. Analysis demonstrates that the addition of fluoride decreases the symmetry of the structure of tellurite glasses resulting in increasing of the emission cross-section and removes the OH- groups resulting in increasing of the measured fluorescence lifetime of Yb3+ ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of F- ions in a germanium-lead-tellurite glass system oil the spectral and potential laser properties of the Yb3+ are investigated. The absorption spectra, lifetimes, the emission cross-sections and the minimum pump intensities of the glass system with and without F- ions have been measured and calculated. The results show that the fluorescence lifetime and the minimum pump intensity of Yb3+ ions increase evidently, which indicates that germanium lead-oxyfluoride tellurite glass is a promising laser host matrix for high power generation. FT-IR spectra were used to analyse the effect of F- ions on OH- groups in this glass system. Analysis demonstrates that addition of fluoride removes the OH- groups and results in improvement of fluorescence lifetime of Yb3+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and frequency upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride germanate glasses have been investigated. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network and has an important influence on the upconversion luminescence. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible upconversion mechanism was also estimated and evaluated. Intense upconversion luminescence indicates that Er3+/Yb3+-codoped oxychloride germanate glass is a promising laser material. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TiO2/ormosil films doped with laser dyes have been prepared by the sol-gel method. Spectroscopic properties of the entrapped dyes are studied by the absorption and emission techniques. The results indicate that the absorption and fluorescence spectra of kiton red depend strongly on the properties of the ormosil matrices. The heat-treatment of the kiton red-doped film obviously leads to the increasing fluorescence intensity and the largest fluorescence intensity is obtained after heat-treatment of 150 degrees C for 2 h. However, the fluorescence intensity of the rhodamine 6G-doped film decreases with the increase of the heat-treatment temperature. (c) 2005 Elsevier B.V. All rights reserved.