951 resultados para LUNG
Resumo:
A severe adult respiratory distress syndrome after bilateral lung contusion was successfully treated by extracorporeal membrane oxygenation and subsequent double-lung transplantation in a 19-year-old man. The patient is fully rehabilitated 1 year after transplantation.
Resumo:
Replacement of the heart and both lungs or single lung transplantation has been performed in a few cases of terminal (cardio) pulmonary disease in childhood. It remains unclear whether pulmonary allografts will meet the demands of a growing organism. Six domestic pigs (mean body weight, 24 kg) underwent left lung transplantation from donors of equal weight. Immunosuppression consisted of cyclosporine, azathioprine, and corticosteroids. After the pigs doubled their body weight, growth of the lung was assessed by bronchography and pulmonary angiography. In transplant animals it took 11 weeks (normal animals, 6 weeks) for their weight to double. At that time, the bronchial tree showed similar growth when compared with nontransplant animals of equal weight. The diameter of the left lower lobe bronchus (9.2 +/- 0.4 mm) was significantly greater than that of animals of 24 kg body weight (7.5 +/- 0.3 mm; p less than 0.01) but comparable to that of normal pigs of similar weight (9.0 +/- 0.5 mm). The same applied for length of the left lower lobe bronchus (transplants, 95 +/- 6.7 mm; controls 24 kg, 67 +/- 2 mm [p less than 0.01]; controls 48 kg, 93 +/- 3 mm). Similar growth tendencies were observed in the pulmonary vascular tree. The diameter of the left lower lobe artery was 9.4 +/- 98 mm in 48 kg transplant pigs, compared with 9.7 +/- 1.2 mm in 24 kg control pigs and 8.5 +/- 0.8 mm in 48 kg control pigs. In one case of recurrent severe pulmonary rejection, the lung did not grow. We conclude from this study that growth is retarded by immunosuppression.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Heart and lung transplantation has been performed in cases of end-stage cardiopulmonary disease in infants. Nevertheless, it still remains unclear whether lung allografts adjust to a growing organism. In 6 young domestic pigs unilateral left lung allotransplantation was performed. Immunosuppression consisted of a triple drug therapy including cyclosporine, azathioprine, and corticosteroids. Lung growth was studied by using bronchography, pulmonary angiography, and lung histology. After 11 weeks the transplanted animals had doubled their body weight from 24 kg to 48 kg. Non-transplanted animals in contrast doubled their weight within only 6 weeks. The growth retardation was attributed to the immunosuppressive therapy. The bronchial tree and pulmonary vasculature of lung allografts showed a similar growth potential to non-transplanted lungs in animals of equivalent body weight. In one case of recurrent severe rejection of the lung no growth was observed. Therefore it was concluded that lung allografts grow adequately according to the development of the recipient organism. Lung transplantation in children does not seem to be restricted by a limited growth potential of the graft.
Resumo:
The occurrence of severe graft failure after lung transplantation which appears refractory to conventional treatment represents a difficult situation with regard to the therapeutic strategies available. Of 17 patients undergoing single lung transplantation at our center, 2 developed early graft failure. In both, temporary artificial cardiopulmonary support by means of extracorporeal membrane oxygenation became necessary as a bridge to retransplantation. Both patients were successfully retransplanted after 8 h and 232 h, respectively, of extra-corporeal support. Postoperatively, there was a variety of complications. The first patient completely recovered from temporary severe cerebral dysfunction diagnosed as "locked-in syndrome". She was discharged from hospital on the 93rd postoperative day and remains alive and well 10 months after her operation. The other patient recovered well early after retransplantation. Later, however, airway problems developed, requiring the implantation of endotracheal stents. Cachexia and several episodes of viral pneumonia contributed to the progressive deterioration of her clinical status. She finally died after being hospitalized for 5 months after the original operation. These two cases illustrate the feasibility of using extracorporeal membrane oxygenation as a bridge to pulmonary transplantation.
Resumo:
Direct revascularization of a bronchial artery has been proposed as a measure to alleviate the problem of bronchial ischemia after lung transplantation. To assess the effect of restoration of arterial blood flow to the transplanted bronchus, bronchial mucosal blood flow was measured in a model of modified unilateral lung transplantation in pigs. Laser Doppler velocimetry (LDV) and radioisotope studies using radio-labeled erythrocytes (RI) were used to measure blood flow at the donor main carina (DC) and upper lobe carina (DUC) after 3 h of reperfusion. The recipient carina was used as a reference point; values obtained by LDV and RI were expressed as percentage of blood flow at the recipient carina. Two groups of animals were studied. In group 1 (n = 6) standard unilateral transplantation was performed; in group 2 (n = 6) a left bronchial artery was reimplanted into the descending thoracic aorta of the recipient. No differences were observed between the two groups with respect to preoperative or postoperative gas exchange or hemodynamics. In group 1, bronchial blood flow at the DC was 37.6 +/- 2.2% (LDV) and 44.1 +/- 14.8% (RI) of reference blood flow. At the DUC, blood flow was 54.9 +/- 7.7% (LDV) and 61.6 +/- 25.7% (RI) of normal flow. In group 2, blood flow was increased at the DC as measured by LDV (55.3 +/- 17.1%; p less than 0.05) and by RI (60.8 +/- 25.3%; p less than 0.2). A similar increase was found at the DUC (LDV: 81.8 +/- 19.3%; p less than 0.05; RI: 88.6 +/- 31.0%; p less than 0.2). It is concluded that there is a significant gradient of blood flow from intra- to extrapulmonary airways after lung transplantation. Reimplantation of a bronchial artery results in significant improvement of graft bronchial blood flow. Restoration of bronchial perfusion to normal levels, however, cannot be achieved, suggesting a possible defect in the microcirculation of the donor airways.
Resumo:
We applied predicted vital capacity to chest size matching between donor and recipient in lung transplantation to 15 single-lung transplant recipients with pulmonary fibrosis and to 20 double-lung transplant recipients with emphysema or non-emphysema. The predicted vital capacity of the donor was significantly correlated with the predicted vital capacity of the recipient both in double-lung transplantation (r = 0.79, p = 0.001) and single-lung transplantation (r = 0.71, p = 0.003). In double-lung transplantation, the post-transplant vital capacity was correlated with the predicted vital capacity of the recipient (r = 0.74, p = 0.002). Emphysema patients and non-emphysema patients contributed equally to this correlation. In left single lung transplantation, there was a weak correlation between the post-transplant vital capacity and the predicted vital capacity of the donor in the allograft (r = 0.57, p = 0.1095). In right single lung transplantation, the post-transplant vital capacity of the allograft tended to be correlated with the predicted vital capacity of recipient (r = 0.77, p = 0.0735). We concluded that donors were actually selected based on the comparison of predicted vital capacity between donor and recipient. In double-lung transplantation, the post-transplant vital capacity was limited by the recipient's normal thoracic volume and was not influenced by underlying pulmonary disease. In single-lung transplantation with pulmonary fibrosis, the allograft transplanted in the left chest could expand to its own size, and the allograft transplanted in the right chest could expand to the recipient's normal thoracic volume as in double-lung transplantation.
Resumo:
BACKGROUND: Lung volume reduction (LVR) surgery is an effective and organ-preserving treatment option for patients suffering from severe dyspnea due to endstage emphysema. METHOD: Resection of functionally inactive lung parenchyma reduces over-inflation and restores the elastic recoil of the lungs. Thus it results in improvement of dyspnea, mobility and pulmonary function. Patient selection is crucial. Of simliar importance is pulmonary rehabilitation, as well as sufficient expertise in the treatment of endstage chronic respiratory failure. RESULTS AND CONCLUSION: The in-hospital morbidity and mortality after LVR are acceptable (0 to 5%) and the good results seem to last at least 18 to 24 months. LVR can be offered to selected patients either as an alternative or as bridge to lung transplantation.
Resumo:
BACKGROUND: The question whether patients suffering from end-stage emphysema who are candidates for lung transplantation should be treated with a single lung or with a double lung transplantation is still unanswered. METHODS: We reviewed 24 consecutive lung transplant procedures, comparing the results of 6 patients with an unilateral and 17 with a bilateral transplantation. PATIENTS AND RESULTS: After bilateral transplantation the patients showed a trend towards better blood gas exchange with shorter time on ventilator and intensive care compared patients after unilateral procedure. Three-year-actuarial survival was higher in the group after bilateral transplantation (83% versus 67%). There was a continuous improvement in pulmonary function in both groups during the first months after transplantation. Vital capacity and forced exspiratory ventilation therapies during the first second were significantly higher in the bilateral transplant group. CONCLUSION: Both unilateral and bilateral transplantation are feasible for patients with end-stage emphysema. Bilateral transplantation results in better pulmonary reserve capacity and faster rehabilitation.
Resumo:
MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.
Resumo:
Here we investigate the expression of OCT4 human lung adenocarcinoma and bronchioloalveolar carcinoma (BAC) tumor biopsies and tumor-derived primary cell cultures. OCT4 has been detected in several human tumors suggesting a potentially critical role in tumorigenesis. We assessed the presence of OCT4 in clinical tumor samples of both adenocarcinoma and BAC at the cellular and transcriptional levels, respectively. Furthermore, we evaluated tumor-derived cell cultures for potential differences in OCT4 expression. Immunohistochemical analysis depicted OCT4 in 2 of 8 adenocarcinoma tumor samples and 3 of 5 BAC tumor samples, with no apparent difference in the degree of expression among the sections examined. These results were validated by transcript analysis. Flow cytometric assessment of 11 adenocarcinoma-derived cell cultures and 3 BAC-derived cell cultures revealed significantly higher OCT4 expression in adenocarcinoma tumors compared to their normal counterparts. This, however, was not observed in the BAC cultures. Comparative studies of OCT4 in adenocarcinoma and BAC tumor cell cultures demonstrated a dramatically higher expression in the former. The expression of OCT4 may represent a specific and effective target for therapeutic intervention in adenocarcinoma and BAC. In addition, the aberrant expression and distribution of OCT4 may indicate important parameters concerning the differences between adenocarcinoma and BAC.
Resumo:
The cytokine tumor-necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) has been shown to preferentially induce apoptosis in cancer cells. A previous study of our group demonstrated that non-small cell lung cancer cell lines can be sensitized to Apo2L/TRAIL-induced apoptosis by chemotherapeutic agents. The aim of the present study was the evaluation of these results in a model of primary culture of non-small cell lung cancer.
Resumo:
PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.
Resumo:
ABSTRACT: BACKGROUND: Using an in vitro triple cell co-culture model consisting of human epithelial cells (16HBE14o-), monocyte-derived macrophages and dendritic cells, it was recently demonstrated that macrophages and dendritic cells create a transepithelial network between the epithelial cells to capture antigens without disrupting the epithelial tightness. The expression of the different tight junction proteins in macrophages and dendritic cells, and the formation of tight junction-like structures with epithelial cells has been demonstrated. Immunofluorescent methods combined with laser scanning microscopy and quantitative real-time polymerase chain reaction were used to investigate if exposure to diesel exhaust particles (DEP) (0.5, 5, 50, 125 mug/ml), for 24 h, can modulate the expression of the tight junction mRNA/protein of occludin, in all three cell types. RESULTS: Only the highest dose of DEP (125 mug/ml) seemed to reduce the occludin mRNA in the cells of the defence system however not in epithelial cells, although the occludin arrangement in the latter cell type was disrupted. The transepithelial electrical resistance was reduced in epithelial cell mono-cultures but not in the triple cell co-cultures, following exposure to high DEP concentration. Cytotoxicity was not found, in either epithelial mono-cultures nor in triple cell co-cultures, after exposure to the different DEP concentrations. CONCLUSION: We concluded that high concentrations of DEP (125 mug/ml) can modulate the tight junction occludin mRNA in the cells of the defence system and that those cells play an important role maintaining the epithelial integrity following exposure to particulate antigens in lung cells.