939 resultados para LIM,Nativi digitali,Immigrati digitali,mappa cognitiva
Resumo:
We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data.
Resumo:
Collective behavior refers to the emergence of complex migration patterns over scales larger than those of the individual elements constituting a system. It plays a pivotal role in biological systems in regulating various processes such as gastrulation, morphogenesis and tissue organization. Here, by combining experimental approaches and numerical modeling, we explore the role of cell density ('crowding'), strength of intercellular adhesion ('cohesion') and boundary conditions imposed by extracellular matrix (ECM) proteins ('constraints') in regulating the emergence of collective behavior within epithelial cell sheets. Our results show that the geometrical confinement of cells into well-defined circles induces a persistent, coordinated and synchronized rotation of cells that depends on cell density. The speed of such rotating large-scale movements slows down as the density increases. Furthermore, such collective rotation behavior depends on the size of the micropatterned circles: we observe a rotating motion of the overall cell population in the same direction for sizes of up to 200 μm. The rotating cells move as a solid body, with a uniform angular velocity. Interestingly, this upper limit leads to length scales that are similar to the natural correlation length observed for unconfined epithelial cell sheets. This behavior is strongly altered in cells that present a downregulation of adherens junctions and in cancerous cell types. We anticipate that our system provides a simple and easy approach to investigate collective cell behavior in a well-controlled and systematic manner.
Influence of Film Cooling Hole Angles and Geometries on Aerodynamic Loss and Net Heat Flux Reduction
Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction
Resumo:
Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (a), compound angle (b), hole inlet geometry, and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR=0.16, 0.64, and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different a and b but with the same angle between the mainstream and coolant flow directions (angle k). This relationship is assessed through experiments by testing two sets of cylindrical holes with different a and b: one set with k=35 deg, and another set with k=60 deg. The data confirm the stated relationship between α, β, k and the aerodynamic mixing loss. The results show that the designer should minimize k to obtain the lowest loss, but maximize b to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α=35.0 deg, β=0 deg) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan, and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is≈50% of the loss of the fan-shaped hole at IR=0.64 and 1.44. © 2013 by ASME.
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.
Resumo:
This work is intended to provide a method for the preparation of maleic anhydride grafted syndiotactic polystyrene (sPS-g-MA). In particular, a novel solid reaction method by a radical grafting approach is investigated. The grafting reaction is performed at a solid state, where the syndiotactic polystyrene (sPS) is swollen in solvent at relatively low temperature compared to the conventional melt modification method. The formation of sPS-g-MA is directly confirmed by Fourier transform infrared spectroscopy and by the morphology observation of sPS/polyamide-6 (Nylon6) blends, when sPS-g-MA is used as a reactive compatibilizer.
Resumo:
The notochord is one of the diagnostic features of the phylum Chordata. Despite the similarities in the early morphogenetic patterns of the notochords of various chordates, they are strikingly distinct from one another at the histological level. The amphioxus notochord is one example of an evolutionary novelty because it is made up of muscle cells. Our previous expressed sequence tag analysis, targeting messenger RNAs expressed in the adult amphioxus notochord, demonstrated that many muscle-related genes are expressed there. To characterize amphioxus notochord cells and to gain insights into the myogenic program in the notochord, we determined the spatial and temporal expression patterns of these muscle-related genes during amphioxus development. We found that BbNA1 (notochord actin), Amphi-Trop I (troponin I), Amphi-TPmyosin (tropomyosin), Amphi-MHC2 (myosin heavy chain), Amphi-nMRLC (notochord-specific myosin regulatory light chain), AmphinTitin/MLCK (notochord-specific titin/myosin light chain kinase), Amphi-MLP/CRP3 (muscle LIM protein), and Amphi-nCalponin (notochord-specific calponin) are expressed with characteristic patterns in notochord cells, including the central cells, dorsally located cells, and ventrally located cells, suggesting that each notochord cell has a unique molecular architecture that may reflect its function. In addition, we characterized two MyoD genes (Amphi-MyoD1 and Amphi-MyoD2) to gain insight into the genetic circuitry governing the formation of the notochord muscle. One of the MyoD genes (Amphi-MyoD2) is expressed in the central notochord cells, and the coexistence of Amphi-MyoD2 transcripts along with the Amphi-MLP/CRP3 transcripts implies the participation of Amphi-MyoD2 in the myogenic program in the notochord muscle.
Resumo:
Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7-14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in delta C-13 (-33.85 parts per thousand to -39.53 parts per thousand Peedee Belemnite (PDB)) and were enriched in delta O-18 (5.16-5.60 parts per thousand PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched O-18 levels. Furthermore, the strongly depleted delta C-13 values (-60.7 parts per thousand to -61.6 parts per thousand PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Rare earth elements (REEs) of 91 fine-grained bottom sediment samples from five major rivers in Korea (the Han, Keum, and Yeongsan) and China (the Changjiang and Huanghe) were studied to investigate their potential as source indicator for Yellow Sea shelf sediments, this being the first synthetic report on REE trends for bottom sediments of these rivers. The results show distinct differences in REE contents and their upper continental crust (UCC)-normalized patterns: compared to heavy rare earth elements (HREEs), light rare earth elements (LREEs) are highly enriched in Korean river sediments, in contrast to Chinese river sediments that have a characteristic positive Eu anomaly. This phenomenon is observed also in primary source rocks within the river catchments. This suggests that source rock composition is the primary control on the REE signatures of these river sediments, due largely to variations in the levels of chlorite and monazite, which are more abundant in Korean bottom river sediments. Systematic variations in I LREE pound/I HREE pound ratios, and in (La/Yb)-(Gd/Yb)(UCC) but also (La/Lu)-(La/Y)(UCC) and (La/Y)-(Gd/Lu)(UCC) relations have the greatest discriminatory power. These findings are consistent with, but considerably expand on the limited datasets available to date for suspended sediments. Evidently, the REE fingerprints of these river sediments can serve as a useful diagnostic tool for tracing the provenance of sediments in the Yellow Sea, and for reconstructing their dispersal patterns and the circulation system of the modern shelf, as well as the paleoenvironmental record of this and adjoining marginal seas.
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Psicologia, especialização em Psicologia Clínica e da Saúde.