931 resultados para Knowledge Transfer 2.0
Resumo:
Background: We address the problem of studying recombinational variations in (human) populations. In this paper, our focus is on one computational aspect of the general task: Given two networks G1 and G2, with both mutation and recombination events, defined on overlapping sets of extant units the objective is to compute a consensus network G3 with minimum number of additional recombinations. We describe a polynomial time algorithm with a guarantee that the number of computed new recombination events is within ϵ = sz(G1, G2) (function sz is a well-behaved function of the sizes and topologies of G1 and G2) of the optimal number of recombinations. To date, this is the best known result for a network consensus problem.Results: Although the network consensus problem can be applied to a variety of domains, here we focus on structure of human populations. With our preliminary analysis on a segment of the human Chromosome X data we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. These results have been verified independently using traditional manual procedures. To the best of our knowledge, this is the first recombinations-based characterization of human populations. Conclusion: We show that our mathematical model identifies recombination spots in the individual haplotypes; the aggregate of these spots over a set of haplotypes defines a recombinational landscape that has enough signal to detect continental as well as population divide based on a short segment of Chromosome X. In particular, we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. The agreement with mutation-based analysis can be viewed as an indirect validation of our results and the model. Since the model in principle gives us more information embedded in the networks, in our future work, we plan to investigate more non-traditional questions via these structures computed by our methodology.
Resumo:
Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.
Resumo:
Background: The cooperative interaction between transcription factors has a decisive role in the control of the fate of the eukaryotic cell. Computational approaches for characterizing cooperative transcription factors in yeast, however, are based on different rationales and provide a low overlap between their results. Because the wealth of information contained in protein interaction networks and regulatory networks has proven highly effective in elucidating functional relationships between proteins, we compared different sets of cooperative transcription factor pairs (predicted by four different computational methods) within the frame of those networks. Results: Our results show that the overlap between the sets of cooperative transcription factors predicted by the different methods is low yet significant. Cooperative transcription factors predicted by all methods are closer and more clustered in the protein interaction network than expected by chance. On the other hand, members of a cooperative transcription factor pair neither seemed to regulate each other nor shared similar regulatory inputs, although they do regulate similar groups of target genes. Conclusion: Despite the different definitions of transcriptional cooperativity and the different computational approaches used to characterize cooperativity between transcription factors, the analysis of their roles in the framework of the protein interaction network and the regulatory network indicates a common denominator for the predictions under study. The knowledge of the shared topological properties of cooperative transcription factor pairs in both networks can be useful not only for designing better prediction methods but also for better understanding the complexities of transcriptional control in eukaryotes.
Resumo:
Knowledge of the relative importance of genetics and behavioural copying is crucial to appraise the evolvability of behavioural consistencies. Yet, genetic and non-genetic factors are often deeply intertwined, and experiments are required to address this issue. We investigated the sources of variation of adult antipredator behaviour in the Alpine swift (Apus melba) by making use of long-term behavioural observations on parents and cross-fostered offspring. By applying an 'animal model' approach to observational data, we show that antipredator behaviour of adult Alpine swifts was significantly repeatable over lifetime (r = 0.273) and heritable (h(2) = 0.146). Regression models also show that antipredator behaviours differed between colonies and sexes (females were more tame), and varied with the hour and year of capture. By applying a parent-offspring regression approach to 59 offspring that were exchanged as eggs or hatchlings between pairs of nests, we demonstrate that offspring behaved like their biological parents rather than like their foster parents when they were adults themselves. Those findings provide strong evidence that antipredator behaviour of adult Alpine swifts is shaped by genetics and/or pre-hatching maternal effects taking place at conception but not by behavioural copying.
Resumo:
The aim of the study was to determine the prevalence and variables associated with the pattern of risky health behavior (PRHB) among adolescent students in Cartagena, Colombia. A cross-sectional study was designed to investigate PRHB in a random cluster sample of students from middle and high schools. The associations were adjusted by logistic regression. A total of 2,625 students participated in this research, with ages from 10 to 20 years, mean=13.8 years (SD=2.0), and 54.3% were women. A total of 332 students reported PRHB (12.7%, 95%CI 11.4–14.0). Age over 15 years (OR=2.19, 95%CI 1.72–2.79), not being heterosexual (OR=1.98, 95%CI 1.36-2.87), poor/mediocre academic performance (OR=1.87, 95%CI 1.47–2.38), family dysfunction (OR=1.78, 95%CI 1.40–2.28) and male gender (OR=1.58, 95%CI 1.24–2.01) were associated with PRHB. One in every eight students presented a PRHB. It is important to pay greater attention to students who are over 15 years of age, male, not heterosexual, with a poor/mediocre academic performance and a dysfunctional family.
Resumo:
The present work discusses the effects of university culture and structure on university-business relations, focusing on knowledge transfer activities. It puts forward the thesis that when links between university and business are introduced into the university system as a turn-key proposition rather than as developmental process, the prevailing university culture and structure will exert resistance against change and will oppose the creation of appropriate structures to promote them, with deleterious effects for the university.
Resumo:
BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.
Resumo:
Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0_1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0.9 %, respectively). After two years, only 6.2 % N were missing in the balance (100 %) which can be attributed to other non-estimated compartments and experimental errors. Results show that an enrichment of only 2 % atom 15N allows the study of the partition of fertilizer-N in a perennial crop such as coffee during a period of two years.
Resumo:
Plasmid DNA and adenovirus vectors currently used in cardiovascular gene therapy trials are limited by low efficiency and short-lived transgene expression, respectively. Recombinant adeno-associated virus (AAV) has recently emerged as an attractive vector for cardiovascular gene therapy. In the present study, we have compared AAV and adenovirus vectors with respect to gene transfer efficiency and the duration of transgene expression in mouse hearts and arteries in vivo. AAV vectors (titer: 5 x 10(8) transducing units (TU)/ml) and adenovirus vectors (1.2 x 10(10) TU/ml) expressing a green fluorescent protein (EGFP) gene were injected either intramyocardially (n=32) or intrapericardially (n=3) in CD-1 mice. Hearts were harvested at varying time intervals (3 days to 1 year) after gene delivery. After intramyocardial injection of 5 microl virus stock solution, cardiomyocyte transduction rates with AAV vectors were 4-fold lower than with adenovirus vectors (1.5% (range: 0.5-2.6%) vs. 6.2% (range: 2.7-13.7%); P<0.05), but similar to titer-matched adenovirus vectors (0.7%; range: 0.2-1.2%). AAV-mediated EGFP expression lasted for at least 1 year. AAV vectors instilled into the pericardial space transduced epicardial myocytes. Arterial gene transfer was studied in mouse carotids (n=26). Both vectors selectively transduced endothelial cells after luminal instillation. Transduction rates with AAV vectors were 8-fold lower than with adenovirus vectors (2.0% (range: 0-3.2%) vs. 16.2% (range: 8.5-20.2%); P<0.05). Prolonged EGFP expression was observed after AAV but not adenovirus-mediated gene transfer. In conclusion, AAV vectors deliver and express genes for extended periods of time in the myocardium and arterial endothelium in vivo. AAV vectors may be useful for gene therapy approaches to chronic cardiovascular diseases.
Resumo:
ABSTRACT Knowledge of the terms (or processes) of the soil water balance equation or simply the components of the soil water balance over the cycle of an agricultural crop is essential for soil and water management. Thus, the aim of this study was to analyze these components in a Cambissolo Háplico (Haplocambids) growing muskmelon (Cucumis melo L.) under drip irrigation, with covered and uncovered soil, in the municipality of Baraúna, State of Rio Grande do Norte, Brazil (05º 04’ 48” S, 37º 37’ 00” W). Muskmelon, variety AF-646, was cultivated in a flat experimental area (20 × 50 m). The crop was spaced at 2.00 m between rows and 0.35 m between plants, in a total of ten 50-m-long plant rows. At points corresponding to ⅓ and ⅔ of each plant row, four tensiometers (at a distance of 0.1 m from each other) were set up at the depths of 0.1, 0.2, 0.3, and 0.4 m, adjacent to the irrigation line (0.1 m from the plant row), between two selected plants. Five random plant rows were mulched using dry leaves of banana (Musa sp.) along the drip line, forming a 0.5-m-wide strip, which covered an area of 25 m2 per of plant row with covered soil. In the other five rows, there was no covering. Thus, the experiment consisted of two treatments, with 10 replicates, in four phenological stages: initial (7-22 DAS - days after sowing), growing (22-40 DAS), fruiting (40-58 DAS) and maturation (58-70 DAS). Rainfall was measured with a rain gauge and water storage was estimated by the trapezoidal method, based on tensiometer readings and soil water retention curves. For soil water flux densities at 0.3 m, the tensiometers at the depths of 0.2, 0.3, and 0.4 m were considered; the tensiometer at 0.3 m was used to estimate soil water content from the soil water retention curve at this depth, and the other two to calculate the total potential gradient. Flux densities were calculated through use of the Darcy-Buckingham equation, with hydraulic conductivity determined by the instantaneous profile method. Crop actual evapotranspiration was calculated as the unknown of the soil water balance equation. The soil water balance method is effective in estimating the actual evapotranspiration of irrigated muskmelon; there was no significant effect of soil coverage on capillary rise, internal drainage, crop actual evapotranspiration, and muskmelon yield compared with the uncovered soil; the transport of water caused by evaporation in the uncovered soil was controlled by the break in capillarity at the soil-atmosphere interface, which caused similar water dynamics for both management practices applied.
Resumo:
Background: Transposable elements (TEs) constitute a substantial amount of all eukaryotic genomes. They induce an important proportion of deleterious mutations by insertion into genes or gene regulatory regions. However, their mutational capabilities are not always adverse but can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution and activity in the genomes of populations under different environmental and demographic regimes, is important to understand their role in species evolution. In this work we study the chromosomaldistribution of two TEs, gypsy and bilbo, in original and colonizing populations of Drosophilasubobscura to reveal the putative effect of colonization on their insertion profile.Results: Chromosomal frequency distribution of two TEs in one original and three colonizingpopulations of D. subobscura, is different. Whereas the original population shows a low insertionfrequency in most TE sites, colonizing populations have a mixture of high (frequency ¿ 10%) andlow insertion sites for both TEs. Most highly occupied sites are coincident among colonizingpopulations and some of them are correlated to chromosomal arrangements. Comparisons of TEcopy number between the X chromosome and autosomes show that gypsy occupancy seems to becontrolled by negative selection, but bilbo one does not. Conclusion: These results are in accordance that TEs in Drosophila subobscura colonizing populations are submitted to a founder effect followed by genetic drift as a consequence of colonization. This would explain the high insertion frequencies of bilbo and gypsy in coincident sites of colonizing populations. High occupancy sites would represent insertion events prior to colonization. Sites of low frequency would be insertions that occurred after colonization and/orcopies from the original population whose frequency is decreasing in colonizing populations. Thiswork is a pioneer attempt to explain the chromosomal distribution of TEs in a colonizing specieswith high inversion polymorphism to reveal the putative effect of arrangements in TE insertionprofiles. In general no associations between arrangements and TE have been found, except in a fewcases where the association is very strong. Alternatively, founder drift effects, seem to play aleading role in TE genome distribution in colonizing populations.
Resumo:
Background: Non-long terminal repeat (non-LTR) retrotransposons have contributed to shaping the structure and function of genomes. In silico and experimental approaches have been used to identify the non-LTR elements of the urochordate Ciona intestinalis. Knowledge of the types and abundance of non-LTR elements in urochordates is a key step in understanding their contribution to the structure and function of vertebrate genomes. Results: Consensus elements phylogenetically related to the I, LINE1, LINE2, LOA and R2 elements of the 14 eukaryotic non-LTR clades are described from C. intestinalis. The ascidian elements showed conservation of both the reverse transcriptase coding sequence and the overall structural organization seen in each clade. The apurinic/apyrimidinic endonuclease and nucleic-acid-binding domains encoded upstream of the reverse transcriptase, and the RNase H and the restriction enzyme-like endonuclease motifs encoded downstream of the reverse transcriptase were identified in the corresponding Ciona families. Conclusions: The genome of C. intestinalis harbors representatives of at least five clades of non-LTR retrotransposons. The copy number per haploid genome of each element is low, less than 100, far below the values reported for vertebrate counterparts but within the range for protostomes. Genomic and sequence analysis shows that the ascidian non-LTR elements are unmethylated and flanked by genomic segments with a gene density lower than average for the genome. The analysis provides valuable data for understanding the evolution of early chordate genomes and enlarges the view on the distribution of the non-LTR retrotransposons in eukaryotes.
Resumo:
Background: Non-long terminal repeat (non-LTR) retrotransposons have contributed to shaping the structure and function of genomes. In silico and experimental approaches have been used to identify the non-LTR elements of the urochordate Ciona intestinalis. Knowledge of the types and abundance of non-LTR elements in urochordates is a key step in understanding their contribution to the structure and function of vertebrate genomes. Results: Consensus elements phylogenetically related to the I, LINE1, LINE2, LOA and R2 elements of the 14 eukaryotic non-LTR clades are described from C. intestinalis. The ascidian elements showed conservation of both the reverse transcriptase coding sequence and the overall structural organization seen in each clade. The apurinic/apyrimidinic endonuclease and nucleic-acid-binding domains encoded upstream of the reverse transcriptase, and the RNase H and the restriction enzyme-like endonuclease motifs encoded downstream of the reverse transcriptase were identified in the corresponding Ciona families. Conclusions: The genome of C. intestinalis harbors representatives of at least five clades of non-LTR retrotransposons. The copy number per haploid genome of each element is low, less than 100, far below the values reported for vertebrate counterparts but within the range for protostomes. Genomic and sequence analysis shows that the ascidian non-LTR elements are unmethylated and flanked by genomic segments with a gene density lower than average for the genome. The analysis provides valuable data for understanding the evolution of early chordate genomes and enlarges the view on the distribution of the non-LTR retrotransposons in eukaryotes.
Resumo:
PURPOSE: Hypertriglyceridemia (hyperTG) is common among intensive care unit (ICU) patients, but knowledge about hyperTG risk factors is scarce. The present study aims to identify risk factors favoring its development in patients requiring prolonged ICU treatment. METHODS: Prospective observational study in the medicosurgical ICU of a university teaching hospital. All consecutive patients staying ≥4 days were enrolled. Potential risk factors were recorded: pathology, energy intake, amount and type of nutritional lipids, intake of propofol, glucose intake, laboratory parameters, and drugs. Triglyceride (TG) levels were assessed three times weekly. Statistics was based on two-way analysis of variance (ANOVA) and linear regression with potential risk factors. RESULTS: Out of 1,301 consecutive admissions, 220 patients were eligible, of whom 99 (45 %) presented hyperTG (triglycerides >2 mmol/L). HyperTG patients were younger, heavier, with more brain injury and multiple trauma. Intake of propofol (mg/kg/h) and lipids' propofol had the highest correlation with plasma TG (r (2) = 0.28 and 0.26, respectively, both p < 0.001). Infection and inflammation were associated with development of hyperTG [C-reactive protein (CRP), r (2) = 0.19, p = 0.004]. No strong association could be found with nutritional lipids or other risk factors. Outcome was similar in normo- and hyperTG patients. CONCLUSIONS: HyperTG is frequent in the ICU but is not associated with adverse outcome. Propofol and accompanying lipid emulsion are the strongest risk factors. Our results suggest that plasma TG should be monitored at least twice weekly in patients on propofol. The clinical consequences of propofol-related hyperTG should be investigated in further studies.
Resumo:
BACKGROUND: Only 25% of IVF transfer cycles lead to a clinical pregnancy, calling for continued technical progress but also more in depth analysis of patients' individual characteristics. The interleukin-1 (IL-1) system and matrix metalloproteinases (MMPs) are strongly implicated in embryo implantation. The genes coding for IL-1Ra (gene symbol IL-1RN), IL-1beta, MMP2 and MMP9 bear functional polymorphisms. We analysed the maternal genetic profile at these polymorphic sites in IVF patients, to determine possible correlations with IVF outcome. METHODS: One hundred and sixty women undergoing an IVF cycle were enrolled and a buccal smear was obtained. The presence of IL-1RN variable number of tandem repeats and IL-1B + 3953, MMP2-1306 and MMP9-1562 single nucleotide substitutions were determined. Patients were divided into pregnancy failures (119), biochemical pregnancies (8) and clinical pregnancies (33). RESULTS: There was a 40% decrease in IL-1RN*2 allele frequency (P = 0.024) and a 45% decrease in IL-1RN*2 carrier status in the clinical pregnancy group as compared to the pregnancy failure group (P = 0.017). This decrease was still statistically significant after a multivariate logistic regression analysis. The likelihood of a clinical pregnancy was decreased accordingly in IL-1RN*2 carriers: odds ratio = 0.349, 95% confidence interval = 0.2-0.8, P = 0.017. The IL-1B, MMP2 and MMP9 polymorphisms showed no correlation with IVF outcome. CONCLUSIONS: IL-1RN*2 allele carriage is associated with a poor prognosis of achieving a pregnancy after IVF.