981 resultados para K-uniformly Convex Functions


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirje

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genes underlying mutant phenotypes can be isolated by combining marker discovery, genetic mapping and resequencing, but a more straightforward strategy for mapping mutations would be the direct comparison of mutant and wild-type genomes. Applying such an approach, however, is hampered by the need for reference sequences and by mutational loads that confound the unambiguous identification of causal mutations. Here we introduce NIKS (needle in the k-stack), a reference-free algorithm based on comparing k-mers in whole-genome sequencing data for precise discovery of homozygous mutations. We applied NIKS to eight mutants induced in nonreference rice cultivars and to two mutants of the nonmodel species Arabis alpina. In both species, comparing pooled F2 individuals selected for mutant phenotypes revealed small sets of mutations including the causal changes. Moreover, comparing M3 seedlings of two allelic mutants unambiguously identified the causal gene. Thus, for any species amenable to mutagenesis, NIKS enables forward genetics without requiring segregating populations, genetic maps and reference sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirje 4.9.1972

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Puhe

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirje

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important problem in descriptive and prescriptive research in decision making is to identify regions of rationality, i.e., the areas for which heuristics are and are not effective. To map the contours of such regions, we derive probabilities that heuristics identify the best of m alternatives (m > 2) characterized by k attributes or cues (k > 1). The heuristics include a single variable (lexicographic), variations of elimination-by-aspects, equal weighting, hybrids of the preceding, and models exploiting dominance. We use twenty simulated and four empirical datasets for illustration. We further provide an overview by regressing heuristic performance on factors characterizing environments. Overall, sensible heuristics generally yield similar choices in many environments. However, selection of the appropriate heuristic can be important in some regions (e.g., if there is low inter-correlation among attributes/cues). Since our work assumes a hit or miss decision criterion, we conclude by outlining extensions for exploring the effects of different loss functions.