985 resultados para Jonathan Safran Foer
Resumo:
Fish species of warmwater origin appear in northeastern U.S. coastal waters in the late summer and remain until late fall when the temperate waters cool. The annual abundance and species composition of warm-water species is highly variable from year to year, and these variables may have effects on the trophic dynamics of this region. To understand this variability, records of warm-water fish occurrence were examined in two neighboring temperate areas, Narragansett Bay and Long Island Sound. The most abundant fish species were the same in both areas, and regional abundances peaked in both areas in the middle of September, four weeks after the maximum temperature in the middle of August. On average, abundance of warm-water species increased throughout the years sampled, although this increase can not be said to be exclusively related to temperature. Weekly mean temperatures between the two locations were highly correlated (r= 0.99; P<0.001). The warm-water fish faunas were distinctly different in annual abundances in the two areas for each species by year (1987–2000), and these differences ref lect the variability in the transport processes to temperate estuaries. The results reveal information on the abundance of warm-water fish in relation to trends toward warmer waters in these region
Resumo:
Body length measurement is an important part of growth, condition, and mortality analyses of larval and juvenile fish. If the measurements are not accurate (i.e., do not reflect real fish length), results of subsequent analyses may be affected considerably (McGurk, 1985; Fey, 1999; Porter et al., 2001). The primary cause of error in fish length measurement is shrinkage related to collection and preservation (Theilacker, 1980; Hay, 1981; Butler, 1992; Fey, 1999). The magnitude of shrinkage depends on many factors, namely the duration and speed of the collection tow, abundance of other planktonic organisms in the sample (Theilacker, 1980; Hay, 1981; Jennings, 1991), the type and strength of the preservative (Hay, 1982), and the species of fish (Jennings, 1991; Fey, 1999). Further, fish size affects shrinkage (Fowler and Smith, 1983; Fey, 1999, 2001), indicating that live length should be modeled as a function of preserved length (Pepin et al., 1998; Fey, 1999).
Resumo:
Water currents are vertically structured in many marine systems and as a result, vertical movements by fish larvae and zooplankton affect horizontal transport (Power, 1984). In estuaries, the vertical movements of larvae with tidal periods can result in their retention or ingress (Fortier and Leggett, 1983; Rijnsdorp et al., 1985; Cronin and Forward, 1986; Forward et al., 1999). On the continental shelf, the vertical movements of organisms interact daily and ontogenetically with depth-varying currents to affect horizontal transport (Pillar et al., 1989; Barange and Pillar, 1992; Cowen et al., 1993, 2000; Batchelder et al., 2002).
Resumo:
Rougheye rockfish (Sebastes aleutianus) and shortraker rockfish (Sebastes borealis) were collected from the Washington coast, the Gulf of Alaska, the southern Bering Sea, and the eastern Kamchatka coast of Russia (areas encompassing most of their geographic distribution) for population genetic analyses. Using starch gel electrophoresis, we analyzed 1027 rougheye rockfish and 615 shortraker rockfish for variation at 29 proteincoding loci. No genetic heterogeneity was found among shortraker rockfish throughout the sampled regions, although shortraker in the Aleutian Islands region, captured at deeper depths, were found to be significantly smaller in size than the shortraker caught in shallower waters from Southeast Alaska. Genetic analysis of the rougheye rockfish revealed two evolutionary lineages that exist in sympatry with little or no gene f low between them. When analyzed as two distinct species, neither lineage exhibited heterogeneity among regions. Sebastes aleutianus seems to inhabit waters throughout the Gulf of Alaska and more southern waters, whereas S. sp. cf. aleutianus inhabits waters throughout the Gulf of Alaska, Aleutian Islands, and Asia. The distribution of the two rougheye rockfish lineages may be related to depth where they are sympatric. The paler color morph, S. aleutianus, is found more abundantly in shallower waters and the darker color morph, Sebastes sp. cf. aleutianus, inhabits deeper waters. Sebastes sp. cf. aleutianus, also exhibited a significantly higher prevalence of two parasites, N. robusta and T. trituba, than did Sebastes aleutianus, in the 2001 samples, indicating a possible difference in habitat and (or) resource use between the two lineages.
Resumo:
Otoliths of larval and juvenile fish provide a record of age, size, growth, and development (Campana and Neilson, 1985; Thorrold and Hare, 2002). However, determining the time of first increment formation in otoliths (Campana, 2001) and assessing the accuracy (deviation from real age) and precision (repeatability of increment counts from the same otolith) of increment counts are prerequisites for using otoliths to study the life history of fish (Campana and Moksness, 1991). For most fish species, first increment deposition occurs either at hatching, a day after hatching, or after first feeding and yolksac absorption (Jones, 1986; Thorrold and Hare, 2002). Increment deposition before hatching also occurs (Barkmann and Beck, 1976; Radtke and Dean, 1982). If first increment deposition does not occur at hatching, the standard procedure is to add a predetermined number to increment counts to estimate fish age (Campana and Neilson, 1985).
Resumo:
Seasonal and cross-shelf patterns were investigated in larval fish assemblages on the continental shelf off the coast of Georgia. The influence of environmental factors on larval distributions also was examined, and larval transport processes on the shelf were considered. Ichthyoplankton and environmental data were collected approximately every other month from spring 2000 to winter 2002. Ten stations were repeatedly sampled along a 110-km cross-shelf transect, including four stations in the vicinity of Gray’s Reef National Marine Sanctuary. Correspondence analysis (CA) on untransformed community data identified two seasonal (warm weather [spring, summer, and fall] and winter) and three cross-shelf larval assemblages (inner-, mid-, and outer-shelf ). Five environmental factors (temperature, salinity, density, depth of the water column, and stratification) were related to larval cross-shelf distribution. Specifically, increased water column stratification was associated with the outer-shelf assemblage in spring, summer, and fall. The inner shelf assemblage was associated with generally lower temperatures and lower salinities in the spring and summer and higher salinities in the winter. The three cross-shelf regions indicated by the three assemblages coincided with the location of three primary water masses on the shelf. However, taxa occurring together within an assemblage were transported to different parts of the shelf; thus, transport across the continental shelf off the coast of Georgia cannot be explained solely by twodimensional physical factors.
The Northern Rockfish, Sebastes polyspinis, in Alaska: Commercial Fishery, Distribution, and Biology
Resumo:
The northern rockfish, Sebastes polyspinis, is the second most abundant rockfish in Alaska, and it supports a valuable trawl fishery. Little information is available, however, on either the biology of this species or its commercial fishery. To provide a synopsis of information on northern rockfish in Alaska, this study examined data for this species from commercial fishery observations in 1990–98 and from fishery-independent trawl surveys in 1980–99. Nearly all the commercial catch came from bottom trawling, mostly by large factory-trawlers, although smaller shore-based trawlers in recent years took an increasing portion of the catch in the Gulf of Alaska. Most of the northern rockfish catch in the Gulf of Alaska was taken by a directed fishery, whereas that of the Aleutian Islands predominantly came as discarded bycatch in the Atka mackerel fishery. In both regions, most of the catch was taken from a number of relatively small and discrete fishing grounds at depths of 75–150 m in the Gulf of Alaska and 75–175 m in the Aleutian Islands. These grounds, especially in the Gulf of Alaska, are on shallow rises or banks located on the outer continental shelf, and often are surrounded by deeper water. Five fishing grounds were identified in the Gulf of Alaska, and eleven in the Aleutian Islands. One fishing ground in the Gulf of Alaska, the “Snakehead” south of Kodiak Island, accounted for 46% of the total northern rockfish catch in this region. Analysis of the survey data generally revealed similar patterns of geographic distribution as those seen in the fishery, although some of the commercial fishing grounds did not stand out as areas of special abundance in the surveys. The surveys also found two areas of abundance that were not evident in the fishery data. Relatively few juvenile northern rockfish were caught in any of the surveys, but those taken in the Gulf of Alaska tended to occur more inshore and at shallower depths than adults. Individual size of northern rockfish was substantially larger in the Gulf of Alaska than in the Aleutian Islands according to both fishery and survey data. Analysis of age data from each region supports this, as Gulf of Alaska fish were found to grow significantly faster and reach a larger maximum length than those in the Aleutian Islands. Sex ratio in the Gulf of Alaska was nearly 50:50, but females predominated in the Aleutian Islands by a ratio of 57:43. In both regions, size of females was significantly larger than males.
Resumo:
This is the report on the Survey of the Lesser Silver Water Beetle Hydrochara caraboides in Cheshire 1997 by the English Nature Research Reports. The three surveyed areas were the ponds at Reaseheath, Mickle Trafford and Brookhouse Farm. The report goes through the method of survey and individual results for each location/pond, aspects of the breeding sites considered favourable to Hydrochara caraboides as depth, vegetation, predators and prey species, surrounding land. It comes with suggestions for further work and appendixes. Appendix A contains tabulated lists of plants and invertebrates found in the various ponds, Appendix B shows grid references and a brief description of ponds at Brookhouse Farm, pond diagrams are plotted in Appendix C.
Resumo:
O trabalho presente tem como enfoque o estudo da evolução quaternária da Baixada de Jacarepaguá situada no estado do Rio de Janeiro através do uso do método GPR (Ground Penetrating Radar). Os numerosos estudos feitos na Baixada de Jacarepaguá, baseados nas curvas de variação do nível do mar em diferentes setores da costa Brasileira (MARTIN et al. 1985) e datações ao radiocarbono contribuíram na elaboração de um modelo evolutivo no Pleistoceno e no Holoceno. Esse modelo mostra em primeiro lugar episódios transgressivos em 7000-5100 anos BP, 3900-3600 anos BP e 2700-2500 anos BP e episódios regressivos a 5100-3900 anos BP, 3600-2700 anos BP e depois de 2500 anos BP. Esses episódios de variações do nível relativo do mar tiveram por consequência a constante evolução da Baixada de Jacarepaguá do estado de ilha-barreira com uma e depois duas barreiras (interna e externa), fruto da inundação da planície por invasão marinha em episódios transgressivos, a um estado de planície costeira emersa em episódios regressivos com barreira progradante direção ao mar e processos erosivos associados. Esse modelo evolutivo não inclui dados processados obtidos com o GPR, método que permite por impulsos eletromagnéticos de alta freqüência gerar um perfil de refletores baseado nas descontinuidades elétricas na subsuperficie. Os perfis levantados e processados nesse trabalho permitiram confirmar esse modelo evolutivo, mostrando uma sucessão de migração do perfil de praia e geometria sedimentar associada em resposta as numerosas variações eustática local.
Resumo:
Plankton and larval fish sampling programs often are limited by a balance between sampling frequency (for precision) and costs. Advancements in sampling techniques hold the potential to add considerable efficiency and, therefore, add sampling frequency to improve precision. We compare a newly developed plankton imaging system, In Situ Ichthyoplankton Imaging System (ISIIS), with a bongo sampler, which is a traditional plankton sampling gear developed in the 1960s. Comparative sampling was conducted along 2 transects ~30–40 km long. Over 2 days, we completed 36 ISIIS tow-yo undulations and 11 bongo oblique tows, each from the surface to within 10 m of the seafloor. Overall, the 2 gears detected comparable numbers of larval fishes, representing similar taxonomic compositions, although larvae captured with the bongo were capable of being identified to lower taxonomic levels, especially larvae in the small (<5 mm), preflexion stages. Size distributions of the sampled larval fishes differed considerably between these 2 sampling methods, with the size range and mean size of larval fishes larger with ISIIS than with the bongo sampler. The high frequency and fine spatial scale of ISIIS allow it to add considerable sampling precision (i.e., more vertical sections) to plankton surveys. Improvements in the ISIIS technology (including greater depth of field and image resolution) should also increase taxonomic resolution and decrease processing time. When coupled with appropriate net sampling (for the purpose of collecting and verifying the identification of biological samples), the use of ISIIS could improve overall survey design and simultaneously provide detailed, process-oriented information for fisheries scientists and oceanographers.
Resumo:
Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre. This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies, and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes. The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies, and the nursery habitat they provide, translocate larvae northeastward.