908 resultados para Iron chelator
Resumo:
Iron supplementation in hemodialysis patients is fundamental to erythropoiesis, but may cause harmful effects. We measured oxidative stress using labile plasma iron (LPI) after parenteral iron replacement in chronic hemodialysis patients. Intravenous iron saccharate (100 mg) was administered in patients undergoing chronic hemodialysis (N = 20). LPI was measured by an oxidant-sensitive fluorescent probe at the beginning of dialysis session (T0), at 10 min (T1), 20 min (T2), and 30 min (T3) after the infusion of iron and at the subsequent session; P < 0.05 was significant. The LPI values were significantly raised according to the time of administration and were transitory: -0.02 +/- 0.20 mu mol/L at the beginning of the first session, 0.01 +/- 0.26 mu mol/L at T0, 0.03 +/- 0.23 mu mol/L at T1, 0.09 +/- 0.28 mmol/L at T2, 0.18 +/- 0.52 mmol/L at T3, and -0.02 +/- 0.16 mmol/L (P = 0.001 to 0.041) at the beginning of the second session. The LPI level in patients without iron supplementation was -0.06 +/- 0.16 mmol/L. Correlations of LPI according to time were T1, T2, and T3 vs. serum iron (P = 0.01, P = 0.007, and P = 0.0025, respectively), and T2 and T3 vs. transferrin saturation (P = 0.001 and P = 0.0003, respectively). LPI generation after intravenous saccharate administration is time-dependent and transitorily detected during hemodialysis. The LPI increment had a positive correlation to iron and transferrin saturation.
Resumo:
Solvatochromic and ionochromic effects of the iron(II)bis(1,10-phenanthroline)dicyano (Fe(phen)(2)(CN)(2)) complex were investigated by means of combined DFT/TDDFT calculations using the PBE and B3LYP functionals. Extended solvation models of Fe(phen)(2)(CN)(2) in acetonitrile and aqueous solution, as well as including interaction with Mg(2+), were constructed. The calculated vertical excitation energies reproduce well the observed solvatochromism in acetonitrile and aqueous solutions, the ionochromism in acetonitrile in the presence of Mg(2+), and the absence of ionochromic effect in aqueous solution. The vertical excitation energies and the nature of the transitions were reliably predicted after inclusion of geometry relaxation upon aqueous micro- and global solvation and solvent polarization effect in the TDDFT calculations. The two intense UV-vis absorption bands occurring for all systems studied are interpreted as transitions from a hybrid Fe(II)(d)/cyano N(p) orbital to a phenanthroline pi* orbital rather than a pure metal-to-ligand-charge transfer (MLCT). The solvatochromic and ionochromic blue band shifts of Fe(phen)(2)(CN)(2) were explained with preferential stabilization of the highest occupied Fe(II)(d)/cyano N(p) orbitals as a result of specific interactions with water solvent molecules or Mg(2+) ions in solution. Such interactions occur through the CN(-) groups in the complex, and they have a decisive role for the observed blue shifts of UV-vis absorption bands.
Resumo:
The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface-enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M(4)(py) (four metal atoms bonded to one py moiety) and M(4)(alpha-pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M(4)(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed alpha-pyridil species, as suggested previously. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this work, we present the synthesis and characterization of a hybrid nanocomposite constituted by iron oxide nanoparticles and vanadium oxide/Hexadecylamine (VO(x)/Hexa) nanotubes. Transmission Electron Microscopy (TEM) images show small particles (around 20 nm) in contact with the external wall of the multiwall tubes, which consist of alternate layers of VO(x) and Hexa. By Energy Dispersive Spectroscopy (EDS), we detected iron ions within the tube walls and we have also established that the nanoparticles are composed of segregated iron oxide. The samples were studied by Electron Paramagnetic Resonances (EPR) and dc-magnetization as a function of the magnetic field. The analysis of the magnetization and EPR data confirms that a fraction of the V atoms are in the V(4+) electronic state and that the nanoparticles exhibit a superparamagnetic behavior. The percentage of V and Fe present in the nanocomposite was determined using Instrumental Neutron Activation Analysis (INAA). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A fast and reliable method for the direct determination of iron in sand by solid sampling graphite furnace atomic absorption spectrometry was developed. A Zeeman-effect 3-field background corrector was used to decrease the sensitivity of spectrometer measurements. This strategy allowed working with up to 200 mu g of samples, thus improving the representativity. Using samples with small particle sizes (1-50 mu m) and adding 5 mu g Pd as chemical modifier, it was possible to obtain suitable calibration curves with aqueous reference solutions. The pyrolysis and atomization temperatures for the optimized heating program were 1400 and 2500 degrees C, respectively. The characteristic mass, based on integrated absorbance, was 56 pg, and the detection limits, calculated considering the variability of 20 consecutive measurements of platform inserted without sample was 32 pg. The accuracy of the procedure was checked with the analysis of two reference materials (IPT 62 and 63). The determined concentrations were in agreement with the recommended values (95% confidence level). Five sand samples were analyzed, and a good agreement (95% confidence level) was observed using the proposed method and conventional flame atomic absorption spectrometry. The relative standard deviations were lower than 25% (n = 5). The tube and boat platform lifetimes were around 1000 and 250 heating cycles, respectively.
Resumo:
We report the synthesis and spectroscopic/electrochemical properties of iron(II) complexes of polydentate Schiff bases generated from 2-acetylpyridine and 1,3-diaminopropane, acetylpyrazine and 1,3-diaminopropane, and from 2-acetylpyridine and L-histidine. The complexes exhibit bis(diimine)iron(II) chromophores in association with pyrazine, pyridine or imidazole groups displaying contrasting pi-acceptor properties. In spite of their open geometry, their properties are much closer to those of macrocyclic tetraimineiron(II) complexes. An electrochemical/spectroscopic correlation between E degrees(Fe(III/II)) and the energies of the lowest MLCT band has been observed, reflecting the stabilization of the HOMO levels as a consequence of the increasing backbonding effects in the series of compounds. Mossbauer data have also confirmed the similarities in their electronic structure, as deduced from the spectroscopic and theoretical data. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is little information on nickel adsorption by Brazilian soils. The objective of this experiment was to determine the effect of pH, organic matter, and iron oxides on nickel adsorption by three soils: a clayey Anionic Rhodic Acrudox, a sandy clay loam Anionic Xanthic Acrudox, and a clayey Rhodic Hapludalf. Soil samples were collected from the 0-0.2 in layer and treated to eliminate organic matter and iron oxides. The nickel adsorption was evaluated in the original samples and in those treated to remove organic matter and to remove both, organic matter and iron oxides, using 2 g soil + 20 mL of 0.01 mol L-1 CaCl2 solution containing 5 mg L-1 Ni, pH varying from 3.5 to 7.5. The nickel adsorption decreased with the elimination of organic matter. For the samples without organic matter and iron oxides, adsorption decreased only in the Anionic Rhodic Acrudox. The pH was the main factor involved in nickel adsorption variation, and for soil samples without organic matter and iron oxides, the maximum adsorption occurred at higher pH values.
Resumo:
Grafting is a technique that may affect plant tolerance to iron chlorosis in plants cultivated for their fruit. Therefore, the objective of this study was to evaluate the tolerance of non-grafted quince seedlings and pear grafted onto quince plants cultivated in pots with alkaline soil. The experiment was conducted in a greenhouse at the University of Cordoba, Spain, in pots (3 L) filled with alkaline soil, with one plant per pot. The treatments consisted of two genotypes, quince (Cydonia oblonga Mill) semi-woody rooted cuttings, cultivar BA29, and pear (Pyrus Communis L.), cultivar Ercolini, grafted onto quince cultivar BA29 (rootstock), and two nutrient solutions with and without iron (80 mu M Fe-EDDHA) arranged in a completely random design with eight repetitions. Each pot received 250 mL of the nutrient solution on June 3rd, 2010. Chlorophyll indirect measurements and the main stem length were evaluated for six weeks after the commencement of the treatments. During the last week, the main stem dry matter weight and the leaf total iron content were determined. It was found that grafting pear seedlings onto quince rootstock resulted in a higher tolerance to iron deficiency than when quince was not grafted. Non-grafted quince plants without iron in the nutrient solution, compared to the results with its application, showed low SPAD (Soil-Plant Analyses Development) values and resulted in plants with a lower leaf iron content and lower dry matter production; however, decreased seedling stem growth was observed only in the last week of cultivation.