967 resultados para Ions pesados


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrophosphatase activity of rat osseous plate alkaline phosphatase was studied at different concentrations of calcium and magnesium ions. with the aim of characterizing the modulation of enzyme activity by these metals. In the absence of metal ions, the enzyme hydrolysed pyrophosphate following Michaelian kinetics with a specific activity of 36.7 U/mg and K-0.5 = 88 mu M. In the presence of low concentrations (0.1 mM) of magnesium (or calcium) ions, the enzyme also exhibited Michaclian kinetics for the hydrolysis of pyrophosphate, but a significant increase in specific activity (123 U/mg) was observed. K-m values remained almost unchanged. Quite different behavior occurred in the presence of 2 mM magnesium (or calcium) ions. In addition to low-affinity sites (K-0.5 = 40 and 90 mu M, for magnesium and calcium, respectively), high-affinity sites were also observed with K-0.5 values 100-fold lower. The high-affinity sites observed in the presence of calcium ions represented about 10% of those observed for magnesium ions. This was correlated with the fact that only magnesium ions triggered conformational changes yielding a fully active enzyme. These results suggested that the enzyme could hydrolyse pyrophosphate, even at physiological concentrations (4 mu M), since magnesium concentrations are high enough to trigger conformational changes increasing the enzyme activity. A model, suggesting the involvement of magnesium ions in the hydrolysis of pyrophosphate by rat osseous plate alkaline phosphatase is proposed. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removing microcontaminants from effluents is a challenge today, because of its high cost and low efficiency, especially in the treatment of effluents containing heavy metals. An alternative that has emerged is the use of biodegradable nanocomposites, which exhibit good removal and recovery performances, in addition to its low cost. With this in mind, the present study aimed to develop and characterize a nanocomposite based on hydroxyapatite (HAP), polyurethane (PU) and polyvinyl alcohol (PVA) for removing heavy metals. Thus, the research was conducted in several steps: i)- Physico-chemical and microbiological hospital effluent characterization; ii)- Production of hydroxyapatite by aqueous precipitation technique, and their characterization; iii)- Production of the nanocomposite in which the hydroxyapatite was added to the polyurethane prepolymers and then the polyvinyl alcohol/hydroxyapatite film was produced; iv)- Polyvinyl composite without film PU/HAp was also produced in the proportions of 20 and 40% HAp; v)- The composites was characterized by the techniques of XRD, FTIR, SEM / EDS, BET, Zeta Potential and TGA; vi)- The sisal and coconut fibres were washed and dried for comparative tests of adsorption; vii)- Adsorption tests for evaluating the removal of heavy metals (nickel and cadmium). Initial screening adsorption capacity (HAp; PU/HAp - 20 and 40%; PU / HAp / PVA), kinetic studies of adsorption of Cd (II) by HAp; multifactorial design analysis (factorial design) for identifying the most important variables in the adsorption of Cd (II) by composite PU/HAp. Also comparative analysis of adsorption of Cd and Ni by composite PU/HAp were conducted, as well as comparative tests of adsorption of Cd (coconut fibre) and Ni (sisal fibre). It was possible to verify that the composite PU/HAp 40% showed better effectiveness for the removal of Cd (II) and Ni (II), above 80%, equivalent to the lignocellulosic fibre used and HAp produced. As main conclusion, it can be referred that the composite PU/HAp 40% is an effective adsorvent to wastewater treatment for heavy metal removal, with low cost and high efficiency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar alguns atributos químicos do solo e a disponibilidade de cádmio (Cd), cromo (Cr), níquel (Ni), mercúrio (Hg), chumbo (Pb) e arsênio (As), por meio da extração pelo DTPA, em conseqüência da aplicação superficial de escória de aciaria, lama cal e lodos de esgoto centrifugados e de biodigestores, nas doses 0 (testemunha), 2, 4 e 8 Mg ha-1 e um tratamento adicional composto pela calagem superficial na dose 2 Mg ha-1. O experimento foi conduzido em delineamento de blocos ao acaso, em condições de campo, em área sob sistema plantio direto, durante 2003 e 2004. A aplicação superficial de escória de aciaria, lama cal, lodo de esgoto centrifugado e de biodigestor, até a dose 8 Mg ha-1, assim como o calcário na dose 2 Mg ha-1, não trazem problemas de disponibilidade ao ambiente, com relação aos metais pesados Cd, Cr, Hg, Pb, Ni e As, quando aplicados sobre a superfície em Latossolo Vermelho distrófico, no sistema plantio direto. A fitodisponibilidade de metais pesados às culturas da soja e aveia-preta foi nula, quando foram aplicadas doses de até 8 Mg ha-1 de lodo de esgoto, escória e lama cal sobre a superfície do solo, no sistema plantio direto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of a promising alternative for the treatment of produced water from the oil industry envisaging its reuse was the focus of this work. Millions of liters of water are generated per day, containing heavy metals in low concentrations (< 0,15 mg/L for Pb, <0,04 mg/L for Cd, <0,04 mg/L for Ni). The technology applied to extract these metals from aqueous phase was the solvent extraction and the extratants used were vegetable oils originated from coconut oil. They can be used in natural form or as derivatives, known as MAC - Mixture of Carboxílics Acids. The determination of the heavy metal con¬centrations in a complex matrix was made by using the atomic absorption spectrometry technique (AAS). On the bench tests using synthetics aqueous solutions containing metals, vegetable oils showed no power to extract the metals studied. The extractant MAC was selective for the Pb> Cd> Ni, in the concentration of 8% in the same organic phase. In this condition, the lower efficiency of extraction obtained was 92% for the Pb, 69% for the Cd, in the range of pH ranging from 6 to 8. An experimental planning was conducted for continuous tests. The device used was called MDIF Misturador-Decantador à Inversão de Fases and the aqueous phase was produced water from Pólo Indutrial de Guamaré/RN . No correlation between the studied variables (concentration of metal, concentration of extratant and agitation in the mixing chamer) could be obtained, because of possible factors which occurred as: variation in the composition of the studied sample, phenomena of precipitation and complexation of metals in the reservoir of feed, solubility of extratant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heavy metals are used in many industrial processes and when discharged to the environment can cause harmful effects to human, plants and animals. The adsorption technology has been used as an effective methodology to remove metallic ions. The search for new adsorbents motivated the development of this research, accomplished with the purpose of removing Cr (III) from aqueous solutions. Diatomite, chitosan, Filtrol 24TM and active carbon were used as adsorbents. To modify the adsorbent surface was used a bicontinuous microemulsion composed by water (25%), kerosene (25%), saponified coconut oil (10%) and as co-surfactant isoamyl or butyl alcohols (40%). With the objective of developing the best operational conditions the research started with the surfactant synthesis and after that the pseudo-ternary diagrams were plotted. It was decided to use the system composed with isoamyl alcohol as co-surfactant due its smallest solubility in water. The methodology to impregnate the microemulsion on the adsorbents was developed and to prepare each sample was used 10 g of adsorbent and 20 mL of microemulsion. The effect of drying time and temperature was evaluated and the best results were obtained with T = 65 ºC and t = 48 h. After evaluating the efficiency of the tested adsorbents it was decided to use chitosan and diatomite. The influence of the agitation speed, granule size, heavy metal synthetic solution concentration, pH, contact time between adsorbent and metal solution, presence or not of NaCl and others metallic ions in the solution (copper and nickel) were evaluated. The adsorption isotherms were obtained and Freundlich and Langmuir models were tested. The last one correlated better the data. With the purpose to evaluate if using a surfactant solution would supply similar results, the adsorbent surface was modified with this solution. It was verified that the adsorbent impregnated with a microemulsion was more effective than the one with a surfactant solution, showing that the organic phase (kerosene) was important in the heavy metal removal process. It was studied the desorption process and verified that the concentrated minerals acids removed the chromium from the adsorbent surface better than others tested solutions. The treatment showed to be effective, being obtained an increase of approximately 10% in the chitosan s adsorption capacity (132 mg of Cr3+ / g adsorbent), that was already quite efficient, and for diatomite, that was not capable to remove the metal without the microemulsion treatment, it was obtained a capacity of 10 mg of Cr3+ / g adsorbent, checking the applied treatment effectiveness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During production of oil and gas, there is also the production of an aqueous effluent called produced water. This byproduct has in its composition salts, organic compounds, gases and heavy metals. This research aimed to evaluate the integration of processes Induced Air Flotation (IAF) and photo-Fenton for reducing the Total Oils and Greases (TOG) present in produced water. Experiments were performed with synthetic wastewater prepared from the dispersion of crude oil in saline solution. The system was stirred for 25 min at 33,000 rpm and then allowed to stand for 50 min to allow free oil separation. The initial oil concentration in synthetic wastewater was 300 ppm and 35 ppm for the flotation and the photo-Fenton steps, respectively. These values of initial oil concentration were established based on average values of primary processing units in Potiguar Basin. The processes were studied individually and then the integration was performed considering the best experimental conditions found in each individual step. The separation by flotation showed high removal rate of oil with first-order kinetic behavior. The flotation kinetics was dependent on both the concentration and the hydrophilic-lipophilic balance (HLB) of the surfactant. The best result was obtained for the concentration of 4.06.10-3 mM (k = 0.7719 min-1) of surfactant EO 2, which represents 86% of reduction in TOG after 4 min. For series of surfactants evaluated, the separation efficiency was found to be improved by the use of surfactants with low HLB. Regarding the TOG reduction step by photo-Fenton, the largest oil removal reached was 84% after 45 min of reaction, using 0.44 mM and 10 mM of ferrous ions and hydrogen peroxide, respectively. The best experimental conditions encountered in the integrated process was 10 min of flotation followed by 45 min of photo-Fenton with overall TOG reduction of 99%, which represents 5 ppm of TOG in the treated effluent. The integration of processes flotation and photo-Fenton proved to be highly effective in reducing TOG of produced water in oilfields

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accelerated growth of urban regions have produced relevant effects on water resources. Urban regions need an adequate institutional structure that can be able to face environmental demands and the adverse effects of land use on water resources. This study aims at analysing land use effects on heavy metals concentration in sediments and water, as well as making a comparative analysis involving water physical-chemical parameters. Applied methodology included both in loco water parameters measurement and water and bed sediment sampling at 8 sections along the fluvial system. Sample analysis was performed in laboratory in order to measure heavy metal concentrations. It was measured metal concentrations of Al, Cu, Pb, Cd, Fe, Ni and Zn. Once the samples were subjected to acid digestion (method 3050B), concentration values were measured by using atomic absorption spectrometry by flame (ICP-FLAA). The analysis results were compared with normative reference, these standards is intended to assess the risks of toxic substances in sediment and water management programs. The normative reference used in this work were: a) Ontario Ministry of the Environment and Energy (OMEE, 1993) b) Normative Netherlands (VROM, 2000); c) Normative Canadian (CCME, 1999); d) United States Environmental Protection Agency (USEPA, 1977), e) CONAMA Resolution No. 344/2004; f) CONAMA Resolution No. 357/2005. The high concentrations of iron (38,750 mg.g-1), Lead (1100 mg.g-1), Nickel (100 μg.g-1) and zinc (180 μg.g-1) detected sediments confirm the state of degradation of the aquatic system. Iron concentrations (1.08 mg.L-1), Aluminum (0.6 mg.L-1) and phosphorus (0.05 mg.L-1) present in the water are outside the established standards for human consumption

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollandite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. Sensor based on hollandite-type manganese oxide was investigated for amperometric detection of potassium. With an operating potential of +0.63 V versus SCE, potassium ions produce oxidation currents at the sensor, which can be exploited for quantitative determinations. The amperometric signals are linearly proportional to potassium ions concentration in the range 2.7 x 10(-4) to 9.1 x 10(-4) Mol l(-1) with a correlation coefficient of 0.9990. The construction and renewal are simple and inexpensive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)