992 resultados para Inverse Algorithm
Resumo:
In the principles-and-parameters model of language, the principle known as "free indexation'' plays an important part in determining the referential properties of elements such as anaphors and pronominals. This paper addresses two issues. (1) We investigate the combinatorics of free indexation. In particular, we show that free indexation must produce an exponential number of referentially distinct structures. (2) We introduce a compositional free indexation algorithm. We prove that the algorithm is "optimal.'' More precisely, by relating the compositional structure of the formulation to the combinatorial analysis, we show that the algorithm enumerates precisely all possible indexings, without duplicates.
Resumo:
The problem of minimizing a multivariate function is recurrent in many disciplines as Physics, Mathematics, Engeneering and, of course, Computer Science. In this paper we describe a simple nondeterministic algorithm which is based on the idea of adaptive noise, and that proved to be particularly effective in the minimization of a class of multivariate, continuous valued, smooth functions, associated with some recent extension of regularization theory by Poggio and Girosi (1990). Results obtained by using this method and a more traditional gradient descent technique are also compared.
Resumo:
A polynomial time algorithm (pruned correspondence search, PCS) with good average case performance for solving a wide class of geometric maximal matching problems, including the problem of recognizing 3D objects from a single 2D image, is presented. Efficient verification algorithms, based on a linear representation of location constraints, are given for the case of affine transformations among vector spaces and for the case of rigid 2D and 3D transformations with scale. Some preliminary experiments suggest that PCS is a practical algorithm. Its similarity to existing correspondence based algorithms means that a number of existing techniques for speedup can be incorporated into PCS to improve its performance.
Resumo:
In this paper we present some extensions to the k-means algorithm for vector quantization that permit its efficient use in image segmentation and pattern classification tasks. It is shown that by introducing state variables that correspond to certain statistics of the dynamic behavior of the algorithm, it is possible to find the representative centers fo the lower dimensional maniforlds that define the boundaries between classes, for clouds of multi-dimensional, mult-class data; this permits one, for example, to find class boundaries directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers for pattern classification (e.g., with local Gaussian classifiers). The same state variables can be used to define algorithms for determining adaptively the optimal number of centers for clouds of data with space-varying density. Some examples of the applicatin of these extensions are also given.
Resumo:
Amorphous computing is the study of programming ultra-scale computing environments of smart sensors and actuators cite{white-paper}. The individual elements are identical, asynchronous, randomly placed, embedded and communicate locally via wireless broadcast. Aggregating the processors into groups is a useful paradigm for programming an amorphous computer because groups can be used for specialization, increased robustness, and efficient resource allocation. This paper presents a new algorithm, called the clubs algorithm, for efficiently aggregating processors into groups in an amorphous computer, in time proportional to the local density of processors. The clubs algorithm is well-suited to the unique characteristics of an amorphous computer. In addition, the algorithm derives two properties from the physical embedding of the amorphous computer: an upper bound on the number of groups formed and a constant upper bound on the density of groups. The clubs algorithm can also be extended to find the maximal independent set (MIS) and $Delta + 1$ vertex coloring in an amorphous computer in $O(log N)$ rounds, where $N$ is the total number of elements and $Delta$ is the maximum degree.
Resumo:
Chow and Liu introduced an algorithm for fitting a multivariate distribution with a tree (i.e. a density model that assumes that there are only pairwise dependencies between variables) and that the graph of these dependencies is a spanning tree. The original algorithm is quadratic in the dimesion of the domain, and linear in the number of data points that define the target distribution $P$. This paper shows that for sparse, discrete data, fitting a tree distribution can be done in time and memory that is jointly subquadratic in the number of variables and the size of the data set. The new algorithm, called the acCL algorithm, takes advantage of the sparsity of the data to accelerate the computation of pairwise marginals and the sorting of the resulting mutual informations, achieving speed ups of up to 2-3 orders of magnitude in the experiments.
Resumo:
This paper presents a novel algorithm for learning in a class of stochastic Markov decision processes (MDPs) with continuous state and action spaces that trades speed for accuracy. A transform of the stochastic MDP into a deterministic one is presented which captures the essence of the original dynamics, in a sense made precise. In this transformed MDP, the calculation of values is greatly simplified. The online algorithm estimates the model of the transformed MDP and simultaneously does policy search against it. Bounds on the error of this approximation are proven, and experimental results in a bicycle riding domain are presented. The algorithm learns near optimal policies in orders of magnitude fewer interactions with the stochastic MDP, using less domain knowledge. All code used in the experiments is available on the project's web site.
Resumo:
We present a constant-factor approximation algorithm for computing an embedding of the shortest path metric of an unweighted graph into a tree, that minimizes the multiplicative distortion.
Resumo:
This report describes research about flow graphs - labeled, directed, acyclic graphs which abstract representations used in a variety of Artificial Intelligence applications. Flow graphs may be derived from flow grammars much as strings may be derived from string grammars; this derivation process forms a useful model for the stepwise refinement processes used in programming and other engineering domains. The central result of this report is a parsing algorithm for flow graphs. Given a flow grammar and a flow graph, the algorithm determines whether the grammar generates the graph and, if so, finds all possible derivations for it. The author has implemented the algorithm in LISP. The intent of this report is to make flow-graph parsing available as an analytic tool for researchers in Artificial Intelligence. The report explores the intuitions behind the parsing algorithm, contains numerous, extensive examples of its behavior, and provides some guidance for those who wish to customize the algorithm to their own uses.
Resumo:
This paper addresses the problem of efficiently computing the motor torques required to drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a mechanical leg in the swing phase) given the desired trajectory; i.e., the Inverse Dynamics problem. It investigates the high degree of parallelism inherent in the computations, and presents two "mathematically exact" formulations especially suited to high-speed, highly parallel implementations using special-purpose hardware or VLSI devices. In principle, the formulations should permit the calculations to run at a speed bounded only by I/O. The first presented is a parallel version of the recent linear Newton-Euler recursive algorithm. The time cost is also linear in the number of joints, but the real-time coefficients are reduced by almost two orders of magnitude. The second formulation reports a new parallel algorithm which shows that it is possible to improve upon the linear time dependency. The real time required to perform the calculations increases only as the [log2] of the number of joints. Either formulation is susceptible to a systolic pipelined architecture in which complete sets of joint torques emerge at successive intervals of four floating-point operations. Hardware requirements necessary to support the algorithm are considered and found not to be excessive, and a VLSI implementation architecture is suggested. We indicate possible applications to incorporating dynamical considerations into trajectory planning, e.g. it may be possible to build an on-line trajectory optimizer.
Resumo:
The vehicle navigation problem studied in Bell (2009) is revisited and a time-dependent reverse Hyperstar algorithm is presented. This minimises the expected time of arrival at the destination, and all intermediate nodes, where expectation is based on a pessimistic (or risk-averse) view of unknown link delays. This may also be regarded as a hyperpath version of the Chabini and Lan (2002) algorithm, which itself is a time-dependent A* algorithm. Links are assigned undelayed travel times and maximum delays, both of which are potentially functions of the time of arrival at the respective link. The driver seeks probabilities for link use that minimise his/her maximum exposure to delay on the approach to each node, leading to the determination of the pessimistic expected time of arrival. Since the context considered is vehicle navigation where the driver is not making repeated trips, the probability of link use may be interpreted as a measure of link attractiveness, so a link with a zero probability of use is unattractive while a link with a probability of use equal to one will have no attractive alternatives. A solution algorithm is presented and proven to solve the problem provided the node potentials are feasible and a FIFO condition applies for undelayed link travel times. The paper concludes with a numerical example.
Resumo:
Ferr?, S. and King, R. D. (2004) A dichotomic search algorithm for mining and learning in domain-specific logics. Fundamenta Informaticae. IOS Press. To appear
Resumo:
Liu, Yonghuai. Automatic 3d free form shape matching using the graduated assignment algorithm. Pattern Recognition, vol. 38, no. 10, pp. 1615-1631, 2005.
Resumo:
Iantchenko, A.; Sj?strand, J.; Zworski, M., (2002) 'Birkhoff normal forms in semi-classical inverse problems', Mathematical Research Letters 9(3) pp.337-362 RAE2008