892 resultados para Inheritance and succession--Turkey
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Sediment traps placed in the profundal region of Elk Lake, north central Minnesota during the 1979 spring and 1983-84 fall and spring seasons monitored seasonal diatom production for two climatically distinctive periods.
Resumo:
The function of plant genomes depends on chromatin marks such as the methylation of DNA and the post-translational modification of histones. Techniques for studying model plants such as Arabidopsis thaliana have enabled researchers to begin to uncover the pathways that establish and maintain chromatin modifications, and genomic studies are allowing the mapping of modifications such as DNA methylation on a genome-wide scale. Small RNAs seem to be important in determining the distribution of chromatin modifications, and RNA might also underlie the complex epigenetic interactions that occur between homologous sequences. Plants use these epigenetic silencing mechanisms extensively to control development and parent-of-origin imprinted gene expression.
Resumo:
Background: A single case of paternal co-transmission ofmitochondrial DNA (mtDNA) in humans has been reported so far. Objective: To find potential instances of non-maternal inheritance of mtDNA. Methods: Published medical case studies (of single patients) were searched for irregular mtDNA patterns by comparing the given haplotype information for different clones or tissues with the worldwide mtDNA database as known to date-a method that has proved robust and reliable for the detection of flawed mtDNA sequence data. Results: More than 20 studies were found reporting clear cut instances with mtDNAs of different ancestries in single individuals. As examples, cases are reviewed from recent published reports which, at face value, may be taken as evidence for paternal inheritance of mtDNA or recombination. Conclusions: Multiple types (or recombinant types) of quite dissimilar mitochondrial DNA from different parts of the known mtDNA phylogeny are often reported in single individuals. From re-analyses and corrigenda of forensic mtDNA data, it is apparent that the phenomenon of mixed or mosaic mtDNA can be ascribed solely to contamination and sample mix up.
Resumo:
Fish introduction, eutrophication and disappearance of aquatic vegetation are important disturbances of aquatic ecosystems, especially in plateau lakes, which are generally considered to be very vulnerable. Fish were introduced to Lake Dianchi, a eutrophic plateau lake in southwest China, in the late 1950s and 1970s. After the introduction, invasive fish became the dominant species, and the total fish yield increased. Meanwhile, the trophic level of Lake Dianchi had a tendency to increase in the past decades because of the increases in human activities in the watershed area. In addition, the area of aquatic vegetation decreased from more than 90 to 1.8% of the lake area from the 1950s to 2000. This study investigated the effects of fish introduction, eutrophication and aquatic vegetation on the diatom community of Lake Dianchi by examining the changes of microfossil diatom assemblage and abundance. Results showed that the absolute abundance and diatom assemblages changed after fish were introduced. The endemic species, Cyclotella rohomboideo-elliptica, disappeared with the introduction of fish and increasing trophic levels after 1958. Fragilaria crotonensis entered into the lake with the introduction of fish and gradually thrived in the lake after 1958. Diatom species numbers also decreased gradually from 21 to 9 from the past to present. Epiphytic diatoms disappeared with the decrease of aquatic vegetation after 1985. Our study indicated that eutrophication was the most important process determining diatom abundance, and fish introduction was a secondary process determining diatom abundance, while aquatic vegetation had a more important role in structuring the diatom community in this eutrophic plateau lake.
Resumo:
From July 2003 to June 2005, investigations of rotifer temporal and spatial distributions were carried out in a bay of the Three Gorges Reservoir, Xiangxi Bay, which is the downstream segment of the Xiangxi River and the nearest bay to the Three Gorges Reservoir dam in Hubei Province, China. Thirteen sampling sites were selected. The results revealed a high species diversity, with 76 species, and 14 dominant species; i.e., Polyarthra vulgaris, Keratella cochlearis, Keratella valga, Synchaeta tremula, Synchaeta stylata, Trichocerca lophoessa, Trichocerca pusilla, Brachionus angularis, Brachionus calyciflorus, Brachionus forficula forficula, Ascomorpha ovalis, Conochilus unicornis, Ploesoma truncatum and Anuraeopsis fissa. After the first year of the reservoir impoundment, the rotifer community was dominated by ten species; one year later it was dominated by eight species. The community in 2003/2004 was dissimilar to that in 2004/2005, which resulted from the succession of the dominant species. The rotifer community exhibited a patchy distribution, with significant heterogeneity observed along the longitudinal axis. All rotifer communities could be divided into three groups, corresponding to the riverine, the transition and the lacustrine zone, respectively.
Resumo:
Using artificial systems to simulate natural lake environments with cyanobacterial blooms, we investigated plankton community succession by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and morphological method. With this approach, we explored potential ecological effects of a newly developed cyanobacterial blooms removal method using chitosan-modified soils. Results of PCR-DGGE and morphological identification showed that plankton communities in the four test systems were nearly identical at the beginning of the experiment. After applying the newly developed and standard removal methods, there was a shift in community composition, but neither chemical conditions nor plankton succession were significantly affected by the cyanobacteria removal process. The planted Vallisneria natans successfully recovered after cyanobacteria removal, whereas that in the box without removal process did not. Additionally, canonical correspondence analysis indicated that other than for zooplankton abundance, total phosphorus was the most important environmental predictor of planktonic composition. The present study and others suggest that dealing with cyanobacteria removal using chitosan-modified soils can play an important role in controlling cyanobacterial blooms in eutrophicated freshwater systems.