900 resultados para Information retrieval, Web search behavior, Cognitive style
Resumo:
"Prepared by Rudolph C. Mendelssohn"--Pref.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.
Resumo:
Over recent years, evidence has been accumulating in favour of the importance of long-term information as a variable which can affect the success of short-term recall. Lexicality, word frequency, imagery and meaning have all been shown to augment short term recall performance. Two competing theories as to the causes of this long-term memory influence are outlined and tested in this thesis. The first approach is the order-encoding account, which ascribes the effect to the usage of resources at encoding, hypothesising that word lists which require less effort to process will benefit from increased levels of order encoding, in turn enhancing recall success. The alternative view, trace redintegration theory, suggests that order is automatically encoded phonologically, and that long-term information can only influence the interpretation of the resultant memory trace. The free recall experiments reported here attempted to determine the importance of order encoding as a facilitatory framework and to determine the locus of the effects of long-term information in free recall. Experiments 1 and 2 examined the effects of word frequency and semantic categorisation over a filled delay, and experiments 3 and 4 did the same for immediate recall. Free recall was improved by both long-term factors tested. Order information was not used over a short filled delay, but was evident in immediate recall. Furthermore, it was found that both long-term factors increased the amount of order information retained. Experiment 5 induced an order encoding effect over a filled delay, leaving a picture of short-term processes which are closely associated with long-term processes, and which fit conceptions of short-term memory being part of language processes rather better than either the encoding or the retrieval-based models. Experiments 6 and 7 aimed to determine to what extent phonological processes were responsible for the pattern of results observed. Articulatory suppression affected the encoding of order information where speech rate had no direct influence, suggesting that it is ease of lexical access which is the most important factor in the influence of long-term memory on immediate recall tasks. The evidence presented in this thesis does not offer complete support for either the retrieval-based account or the order encoding account of long-term influence. Instead, the evidence sits best with models that are based upon language-processing. The path urged for future research is to find ways in which this diffuse model can be better specified, and which can take account of the versatility of the human brain.
Resumo:
This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
While semantic search technologies have been proven to work well in specific domains, they still have to confront two main challenges to scale up to the Web in its entirety. In this work we address this issue with a novel semantic search system that a) provides the user with the capability to query Semantic Web information using natural language, by means of an ontology-based Question Answering (QA) system [14] and b) complements the specific answers retrieved during the QA process with a ranked list of documents from the Web [3]. Our results show that ontology-based semantic search capabilities can be used to complement and enhance keyword search technologies.
Resumo:
The expansion of the Internet has made the task of searching a crucial one. Internet users, however, have to make a great effort in order to formulate a search query that returns the required results. Many methods have been devised to assist in this task by helping the users modify their query to give better results. In this paper we propose an interactive method for query expansion. It is based on the observation that documents are often found to contain terms with high information content, which can summarise their subject matter. We present experimental results, which demonstrate that our approach significantly shortens the time required in order to accomplish a certain task by performing web searches.
Resumo:
Our research explores the possibility of categorizing webpages and webpage genre by structure or layout. Based on our results, we believe that webpage structure could play an important role, along with textual and visual keywords, in webpage categorization and searching.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
The search-experience-credence framework from economics of information, the human-environment relations models from environmental psychology, and the consumer evaluation process from services marketing provide a conceptual basis for testing the model of "Pre-purchase Information Utilization in Service Physical Environments." The model addresses the effects of informational signs, as a dimension of the service physical environment, on consumers' perceptions (perceived veracity and perceived performance risk), emotions (pleasure) and behavior (willingness to buy). The informational signs provide attribute quality information (search and experience) through non-personal sources of information (simulated word-of-mouth and non-personal advocate sources).^ This dissertation examines: (1) the hypothesized relationships addressed in the model of "Pre-purchase Information Utilization in Service Physical Environments" among informational signs, perceived veracity, perceived performance risk, pleasure, and willingness to buy, and (2) the effects of attribute quality information and sources of information on consumers' perceived veracity and perceived performance risk.^ This research is the first in-depth study about the role and effects of information in service physical environments. Using a 2 x 2 between subjects experimental research procedure, undergraduate students were exposed to the informational signs in a simulated service physical environment. The service physical environments were simulated through color photographic slides.^ The results of the study suggest that: (1) the relationship between informational signs and willingness to buy is mediated by perceived veracity, perceived performance risk and pleasure, (2) experience attribute information shows higher perceived veracity and lower perceived performance risk when compared to search attribute information, and (3) information provided through simulated word-of-mouth shows higher perceived veracity and lower perceived performance risk when compared to information provided through non-personal advocate sources. ^
Resumo:
Graph-structured databases are widely prevalent, and the problem of effective search and retrieval from such graphs has been receiving much attention recently. For example, the Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as a graph where tuples are modeled as vertices connected via foreign-key relationships. Keyword search querying has emerged as one of the most effective paradigms for information discovery, especially over HTML documents in the World Wide Web. One of the key advantages of keyword search querying is its simplicity—users do not have to learn a complex query language, and can issue queries without any prior knowledge about the structure of the underlying data. The purpose of this dissertation was to develop techniques for user-friendly, high quality and efficient searching of graph structured databases. Several ranked search methods on data graphs have been studied in the recent years. Given a top-k keyword search query on a graph and some ranking criteria, a keyword proximity search finds the top-k answers where each answer is a substructure of the graph containing all query keywords, which illustrates the relationship between the keyword present in the graph. We applied keyword proximity search on the web and the page graph of web documents to find top-k answers that satisfy user’s information need and increase user satisfaction. Another effective ranking mechanism applied on data graphs is the authority flow based ranking mechanism. Given a top- k keyword search query on a graph, an authority-flow based search finds the top-k answers where each answer is a node in the graph ranked according to its relevance and importance to the query. We developed techniques that improved the authority flow based search on data graphs by creating a framework to explain and reformulate them taking in to consideration user preferences and feedback. We also applied the proposed graph search techniques for Information Discovery over biological databases. Our algorithms were experimentally evaluated for performance and quality. The quality of our method was compared to current approaches by using user surveys.