986 resultados para Industrial capacity
Resumo:
This paper explores the evolving industrial control paradigm of product intelligence. The approach seeks to give a customer greater control over the processing of an order - by integrating technologies which allow for greater tracking of the order and methodologies which allow the customer [via the order] to dynamically influence the way the order is produced, stored or transported. The paper examines developments from four distinct perspectives: conceptual developments, theoretical issues, practical deployment and business opportunities. In each area, existing work is reviewed and open challenges for research are identified. The paper concludes by identifying four key obstacles to be overcome in order to successfully deploy product intelligence in an industrial application. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Offshore wind has enormous worldwide potential to generate increasing amounts of clean, renewable energy. Monopile foundations are considered to be viable in supporting larger offshore wind turbines in shallow to medium depth waters. In this paper, the lateral and axial response of monopiles installed in undrained clays of varying shear strength and stiffness is investigated using three-dimensional finite element analysis. A combination of axial and lateral loads expected at an offshore wind farm located in a water depth of 30 m has been used in the analysis. Numerically derived monopile axial capacities will be compared to those calculated using an established method in the literature. In addition, the lateral monopile capacity will be determined at ultimate limit state and compared to that at the serviceability limit state. Through a parametric study, it will be shown that with the exception of extremely high axial loads that border on monopile axial capacities, variation in axial loads does not have a significant effect on the ultimate lateral capacity and lateral displacement of monopiles. © 2013 Indian Geotechnical Society.
Resumo:
Industrial emergence is a broad and complex domain, with relevant perspectives ranging in scale from the individual entrepreneur and firm with the business decisions and actions they make to the policies of nations and global patterns of industrialisation. The research described in this article has adopted a holistic approach, based on structured mapping methods, in an attempt to depict and understand the dynamics and patterns of industrial emergence across a broad spectrum from early scientific discovery to large-scale industrialisation. The breadth of scope and application has enabled a framework and set of four tools to be developed that have wide applicability. The utility of the approaches has been demonstrated through case studies and trials in a diverse range of industrial contexts. The adoption of such a broad scope also presents substantial challenges and limitations, with these providing an opportunity for further research. © IMechE 2013.
Resumo:
This article explores risk management in global industrial investment by identifying linkages and gaps between theories and practices. It identifies opportunities for further development of the field. Three related bodies of literature have been reviewed: risk management, global manufacturing and investment. The review suggests that risk management in global manufacturing is overlooked in the literature; that existing theoretical risk management processes are not well developed in the global manufacturing context and that the investment literature applies mainly to financial risk assessment rather than investment risk management structures. Further, there appears to be a serious lack of systematic industrial risk management in investment decision making. This article highlights the opportunities to deploy current good practices more effectively as well as the need to develop more robust theories of industrial investment risk management. The approach adopted to investigate this multidisciplinary topic included a historical review of literature to understand the diverse background of theoretical development. A case study research approach was adopted to collect data, involving four global manufacturing companies and one risk management advisory company to observe the patterns and rationale of current practices. Supporting arguments from secondary data sources reinforced the findings. The research focuses risk management in global industrial investment. It links theories with practice to understand the existing knowledge gap and proposes key research themes for further research. © 2013 Macmillan Publishers Ltd. 1460-3799 Risk Management.
Resumo:
The effect of antenna separation in a 3×3 MIMO system using RoF DAS technology is investigated. Larger antenna separation is found to improve the throughput due to reduced channel correlation and improved SNR. © OSA/OFC/NFOEC 2011.
Resumo:
This paper examines the impact of two simple precoding schemes on the capacity of 3 × 3 MIMO-enabled radio-over-fiber (RoF) distributed antenna systems (DAS) with excess transmit antennas. Specifically, phase-shift-only transmit beamforming and antenna selection are compared. It is found that for two typical indoor propagation scenarios, both strategies offer double the capacity gain that non-precoding MIMO DAS offers over traditional MIMO collocated antenna systems (CAS), with capacity improvements of 3.2-4.2 bit/s/Hz. Further, antenna selection shows similar performance to phase-only beamforming, differing by <0.5% and offering median capacities of 94 bit/s/Hz and 82 bit/s/Hz in the two propagation scenarios respectively. Because optical DASs enable precise, centralized control of remote antennas, they are well suited for implementing these beamforming schemes. Antenna selection, in particular, is a simple and effective means of increasing MIMO DAS capacity. © 2013 IEEE.
Resumo:
Micronutrients play a very important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients (macronutrients and micronutrients) required for microbial growth, and this is one of the main problems at many activated sludge plants treating industrial wastewater. The microbial community structure is one of the important factors controlling the pollutant-degrading capacity of biological wastewater treatment system. In this study, the concentrations of micronutrients of the textile wastewater discharged from a textile plant were determined, and the effects of micronutrients on treatment efficiency and microorganism community structure of the biological treatment system were studied. The results showed that the optimal concentrations of magnesium, molybdenum, zinc, thiamine and niacin in the textile wastewater were 5.0, 2.0, 1.0, 1.0 and 1.0mg/L, respectively. The COD removal rates when magnesium, molybdenum, zinc, thiamine and niacin were added individually to the wastewater in their optimal concentrations were 1.8, 1.4, 1.3, 1.6 and 2.2 times of that of the control, respectively. The improving effects of combinations of zinc and thiamine, zinc and niacin, thiamine and niacin were better than single micronutrient. The diversity of quinones (DQ) changed significantly after the micronutrient was added into the wastewater treatment system. This indicated that there was probably a feasibility of optimizing the biological treatment performances and microorganism community structure of textile wastewater treatment system through micronutrient supplement.