953 resultados para Industrial and production engineering
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.
Resumo:
La perdurabilidad empresarial ha sido un tema recurrente en la literatura sobre dirección de empresas. A pesar de los avances, la liquidación de las empresas aumenta permanentemente. Buscando alternativas de mejora se estudia el caso de dos empresas cuadragenarias dedicadas a prestar servicios de consultoría en ingeniería eléctrica y civil que, en condiciones de crisis, implementaron acciones que les permitieron, no sólo mantenerse en el mercado sino también fortalecer su estructura financiera. Los resultados demostraron que un enfoque equilibrado caracterizado por la toma oportuna de decisiones y la definición e implementación de estrategias de negocio efectivas constituyen herramientas óptimas para asegurar un mayor grado de resiliencia empresarial.
Resumo:
For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET–PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m2 g−1) and pore volume (0.46, 0.56 and 0.50 cm3 g−1), respectively, for PET, PAN and PET–PAN precursors. Selected ACs were successfully tested for 4- chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g−1, respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET–PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
It is generally assumed that Le Corbusier’s urban planning made a break with the past, and that the public spaces designed by him had nothing to do with anything that existed before – a conviction fostered by both the innovative character of his proposals and by the proliferation in his manifestos of watchwords that mask any evocation of the past – words like civilisation machiniste, l’esprit nouveau, l’architecture de demain. However, in his writings, Le Corbusier often mentioned the powerful analogy that exists between the architecture of other times and the logic of modern production. Vers une architecture, for example, contains a mixture of photographs showing silos, cars, aeroplanes, ships (i.e. the fruits of 19th and 20th century civil architecture and mechanical engineering) alongside photographs of Greek and Roman buildings. While Le Corbusier, at the end of the 1920s, claimed “I have only one teacher: the past; only one education: the study of the past”, a series of sketches in the first volume of the Œuvre complète, done during his youth at the archaeological sites visited during his Grand Tour, shows that his interest in the past went far beyond a simple reference.
Resumo:
Cork, as a natural product provided by the bark of the cork oak tree, is an important staple of the Portuguese economy and important to Portuguese culture. It is a sustainable product with a positive ecological footprint, from harvesting to industrial production, with the advantage of creating a local economic model through regional labour activity and distribution. Within the balance between nature-human-economy to create a sustainable system, cork production in Portugal represents a human and social dimension. By focusing on that dimension and by creating an awareness of the cultural and social impact of the activity and by re-appraising the meaning of the material within the culture, the study reframes a consideration of the actual place of labour and production. The human, geophysical, historical, social, economic, ecological and cultural aspects of the place are observed as regards their relation to work or labour in that physical space. A pilot study is being developed in the village of Azaruja in the district of Évora, Portugal. In this small locality, cork is very important in terms of the relationships between the physical subsistence of their residents and the local natural resources, because it structures the place in its cultural, social and economical dimensions. This paper outlines the theoretical foundations, the process and the outcomes of the participatory ecodesign project titled Creative Practices Around the Production of Cork which was initiated by a Portuguese artist/design researcher and developed further through the collaboration with the other two authors, one a Portuguese visual artist/researcher and the other a Turkish fashion designer/theorist. The investigation focuses on questions that expand the notion of place for artists and designers, filtered through the lenses of manual labourers in order to understand their physical, social, cultural and economic relationship with the environment. To create the process of interaction with the place and the people, a creative collaborative dynamic is developed between the authors with their range of artistic sensibilities and the local population. To adopt a holistic notion of sustainability and cultural identity a process of investigation is designated to: (1) analyse, test and interpret - through the dissemination of life stories, visual representation of the place and the creation of cork objects - the importance of culture related to the labour activity of a local natural resource that determines and structures the region; (2) to give public recognition to those involved, taking into account their sense of belonging to the place and in order to show the value of their sustainable labour activities related to local natural resources; (3) to contribute to the knowledge of the place and to its dynamism through an aesthetic approach to labour activities. With reference to fields of knowledge such as anthropology, the social arts and sustainable design, a practice-based research is conducted with collaborative and participatory design methods to create an open model of interaction which involves local people in the realization of the project. Outcomes of this research will be presented in the paper as a survey analysis with theoretical conclusions.
Resumo:
This PhD thesis reports the main activities carried out during the 3 years long “Mechanics and advanced engineering sciences” course, at the Department of Industrial Engineering of the University of Bologna. The research project title is “Development and analysis of high efficiency combustion systems for internal combustion engines” and the main topic is knock, one of the main challenges for boosted gasoline engines. Through experimental campaigns, modelling activity and test bench validation, 4 different aspects have been addressed to tackle the issue. The main path goes towards the definition and calibration of a knock-induced damage model, to be implemented in the on-board control strategy, but also usable for the engine calibration and potentially during the engine design. Ionization current signal capabilities have been investigated to fully replace the pressure sensor, to develop a robust on-board close-loop combustion control strategy, both in knock-free and knock-limited conditions. Water injection is a powerful solution to mitigate knock intensity and exhaust temperature, improving fuel consumption; its capabilities have been modelled and validated at the test bench. Finally, an empiric model is proposed to predict the engine knock response, depending on several operating condition and control parameters, including injected water quantity.
Resumo:
This manuscript reports the overall development of a Ph.D. research project during the “Mechanics and advanced engineering sciences” course at the Department of Industrial Engineering of the University of Bologna. The project is focused on the development of a combustion control system for an innovative Spark Ignited engine layout. In details, the controller is oriented to manage a prototypal engine equipped with a Port Water Injection system. The water injection technology allows an increment of combustion efficiency due to the knock mitigation effect that permits to keep the combustion phasing closer to the optimal position with respect to the traditional layout. At the beginning of the project, the effects and the possible benefits achievable by water injection have been investigated by a focused experimental campaign. Then the data obtained by combustion analysis have been processed to design a control-oriented combustion model. The model identifies the correlation between Spark Advance, combustion phasing and injected water mass, and two different strategies are presented, both based on an analytic and semi-empirical approach and therefore compatible with a real-time application. The model has been implemented in a combustion controller that manages water injection to reach the best achievable combustion efficiency while keeping knock levels under a pre-established threshold. Three different versions of the algorithm are described in detail. This controller has been designed and pre-calibrated in a software-in-the-loop environment and later an experimental validation has been performed with a rapid control prototyping approach to highlight the performance of the system on real set-up. To further make the strategy implementable on an onboard application, an estimation algorithm of combustion phasing, necessary for the controller, has been developed during the last phase of the PhD Course, based on accelerometric signals.
Resumo:
Caves are dark and oligotrophic habitats where chemotrophic microbial communities interact with the inorganic mineral rocks and cooperate organizing themselves in complex biological formations, which are visible in caves as biofilms, biodeposits or biospeleothems. In these environments, microorganisms contribute to the turnover of the matter and activate peculiar enzymatic reactions leading to the modification of the mineral rocks and to the production of metabolites with possible industrial and pharmaceutical interest. In this PhD thesis, various molecular and geomicrobiological approaches were used to investigate the microbial diversity and potential activities in different cave systems, i.e. the orthoquartzite cave Imawarì Yeuta, the sufidic cave Fetida and the ice cave Cenote Abyss. This is aimed at gathering indications on the possible interactions that support microbial growth and its impact in cave environments. As a result, microbial taxa and functions associated to light-independent chemolithotroph and heterotrophic activities were identified in the three caves, indicating the involvement of microorganisms in i) silica mobilization and amorphization processes and the formation of a novel type of silica-based stromatolite in Imawarì Yeuta Cave, ii) the formation of three types of biofilm/biodeposit involved in sulphur cycle and in the speleogenesis of Fetida Cave, iii) the development of biofilms and their maintenance under psychrophilic conditions in samples collected from ice in Cenote Abyss. Additionally, the metabolic potentials of around one hundred isolates derived from these cave systems were evaluated in terms on anti-microbial activity. The results pointed out that unexplored and oligotrophic caves are promising environments for novel bioactive molecules discovery.
Resumo:
The design optimization of industrial products has always been an essential activity to improve product quality while reducing time-to-market and production costs. Although cost management is very complex and comprises all phases of the product life cycle, the control of geometrical and dimensional variations, known as Dimensional Management (DM), allows compliance with product and process requirements. Hence, the tolerance-cost optimization becomes the main practice to provide an effective application of Design for Tolerancing (DfT) and Design to Cost (DtC) approaches by enabling a connection between product tolerances and associated manufacturing costs. However, despite the growing interest in this topic, a profitable application in the industry of these techniques is hampered by their complexity: the definition of a systematic framework is the key element to improving design optimization, enhancing the concurrent use of Computer-Aided tools and Model-Based Definition (MBD) practices. The present doctorate research aims to define and develop an integrated methodology for product/process design optimization, to better exploit the new capabilities of advanced simulations and tools. By implementing predictive models and multi-disciplinary optimization, a Computer-Aided Integrated framework for tolerance-cost optimization has been proposed to allow the integration of DfT and DtC approaches and their direct application for the design of automotive components. Several case studies have been considered, with the final application of the integrated framework on a high-performance V12 engine assembly, to achieve both functional targets and cost reduction. From a scientific point of view, the proposed methodology provides an improvement for the tolerance-cost optimization of industrial components. The integration of theoretical approaches and Computer-Aided tools allows to analyse the influence of tolerances on both product performance and manufacturing costs. The case studies proved the suitability of the methodology for its application in the industrial field, providing the identification of further areas for improvement and refinement.
Resumo:
The fourth industrial revolution, also known as Industry 4.0, has rapidly gained traction in businesses across Europe and the world, becoming a central theme in small, medium, and large enterprises alike. This new paradigm shifts the focus from locally-based and barely automated firms to a globally interconnected industrial sector, stimulating economic growth and productivity, and supporting the upskilling and reskilling of employees. However, despite the maturity and scalability of information and cloud technologies, the support systems already present in the machine field are often outdated and lack the necessary security, access control, and advanced communication capabilities. This dissertation proposes architectures and technologies designed to bridge the gap between Operational and Information Technology, in a manner that is non-disruptive, efficient, and scalable. The proposal presents cloud-enabled data-gathering architectures that make use of the newest IT and networking technologies to achieve the desired quality of service and non-functional properties. By harnessing industrial and business data, processes can be optimized even before product sale, while the integrated environment enhances data exchange for post-sale support. The architectures have been tested and have shown encouraging performance results, providing a promising solution for companies looking to embrace Industry 4.0, enhance their operational capabilities, and prepare themselves for the upcoming fifth human-centric revolution.
Resumo:
In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources.
Resumo:
The exploitation of hydrocarbon reservoirs by the oil and gas industries represents one of the most relevant and concerning anthropic stressor in various marine areas worldwide and the presence of extractive structures can have severe consequences on the marine environment. Environmental monitoring surveys are carried out to monitor the effects and impacts of offshore energy facilities. Macrobenthic communities, inhabiting the soft-bottom, represent a key component of these surveys given their great responsiveness to natural and anthropic changes. A comprehensive collection of monitoring data from four Italian seas was used to investigate distributional pattern of macrozoobenthos assemblages confirming a high spatial variability in relation to the environmental variables analyzed. Since these datasets could represent a powerful tool for the industrial and scientific research, the steps and standardized procedures needed to obtain robust and comparable high-quality data were investigated and outlined. Over recent years, decommissioning of old platforms is a growing topic in this sector, involving many actors in the various decision-making processes. A Multi-Criteria Decision Analysis, specific for the Adriatic Sea, was developed to investigate the impacts of decommissioning of a gas platform on environmental and socio-economic aspects, to select the best decommissioning scenario. From the scenarios studied, the most impacting one has resulted to be total removal, affecting all the faunal component considered in the study. Currently, the European nations are increasing the production of energy from offshore wind farms with an exponential expansion. A comparative study of methodologies used five countries of the North Sea countries was carried out to investigate the best approaches to monitor the effects of wind farms on the benthic communities. In the foreseeable future, collaboration between industry, scientific communities, national and international policies are needed to gain knowledge concerning the effects of these industrial activities on the ecological status of the ecosystems.
Resumo:
Nowadays, an important world’s population growth forecast establish that an increase of 2 billion people is expected by 2050. (UN,2019). This increment of people worldwide involves more humans, as well as growth of the demand for the construction of new residential, institutional, industrial, and infrastructural areas, prompting to a higher consumption of natural resources as required for construction materials. In addition, an effect of this population growth is the production and accumulation of waste causing a serious environmental and economic issue around the world. As an alternative to just producing more waste at the final stage of a building, house, road, among other concrete-based structures, adequate techniques must be applied for recycling and reusing these potential materials. The main priority of the thesis is to foment and evaluate the sustainable construction work leading to environmental-friendly actions that promote the reuse and recycling of construction waste, focusing on the use of construction recycled construction materials as an alternative for sub-base and base of road structure application. This thesis is committed to the analysis of the several laboratory tests carried out for achieving the physical-mechanical properties of the studied materials (recycled concrete aggregates + reclaimed asphalt pavement (RCA+RAP) and stabilized crushed sleepers). All these tests have been carried out in the Laboratory of Roads from the University of Bologna and in the experimental site in CAR srl., at Imola. The results are reported in tables, graphs, and are discussed. The mechanical properties values obtained from the laboratory tests are analysed and compared with standard values declared in the Italian and European normative for roads construction and to the results obtained from in-situ tests in the experimentation field (CAR srl in Imola) with the same materials. This to analyse the performance of them under natural conditions.