892 resultados para Indian chilli,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basaltic sequence of Eocene submarine-erupted pyroclastic sediments totals at least 388 m at DSDP Site 253 on the Ninetyeast Ridge. These fossiliferous hyaloclastic sediments have been erupted and fragmented by explosive volcanism (hydroexplosions) in shallow water. The occurrence of interbedded basaltic ash-fall tuffs within the younger horizons of the hyaloclastic sequence marks the emergence of some Ninetyeast Ridge volcanic vents above sea level. Considerable textural variation allows subdivision of the sequence into six informal lithostratigraphic units. Hydrothermal and diagenetic alteration has caused the complete replacement of all original glass by smectites, and the introduction of abundant zeolite and calcite cements. The major and trace element contents of the hyaloclastites vary due to the alteration, and the admixture of biogenous calcite. On a calcium carbonate-free basis systematic variations are recognisable. Mg, Ni, Cr and Cu are enriched, and Li and Zn depleted in the three older units relative to the younger three. The chemical variability is reflected by the development of saponite in the older part of the sequence and montmorillonite in the younger; and by the presence of a quartz-normative basalt flow occurring in Unit II, in contrast to the Mg-rich highly olivine-normative basalt at the base of the sequence. The younger and older parts of the sequence therefore appear to have been derived from magmas of different chemistry. The sequence, like other basaltic rocks recovered from the Ninetyeast Ridge, is enriched in the light relative to the heavy rare earth elements (REE) although the REE contents vary unsystematically with depth, probably because of the high-temperature subaqueous alteration and the presence of biogenous calcite. This REE data indicates that the Ninetyeast Ridge volcanism was different from that which produces mid-ocean ridge basalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered Fe-Mn crusts from the off-axis region of the first segment of the Central Indian Ridge north of the Rodrigues Triple Junction were studied geochemically and mineralogically. Vernadite (delta-MnO2) is the main mineral oxide phase. 230Thxs and Co concentrations suggest high growth rates of up to 29 mm/Myr and a maximum age of the basal crust layer of 1 Ma. Whereas most of the major and minor elements show concentrations which are typical of hydrogenetic formation, Co, Pb, Ni and Ti concentrations are strikingly lower. Concentrations and distribution of the strictly trivalent rare-earths and yttrium (REY) are typical of hydrogenetic ferromanganese oxide precipitates, but in marked contrast, the crusts are characterized by negative CeSN (shale normalized) anomalies and (Ce/Pr)SN ratios less than unity. Profiles through the crusts reveal only minor variations of the REY distribution and (Ce/Pr)SN ratios range from 0.45 to 0.68 (compared to ratios of up to 2 for typical hydrogenetic crusts from the Central Indian Basin). The apparent bulk partition coefficients between the crusts and seawater suggest that for the strictly trivalent REY the adsorption-desorption equilibrium has been reached. Positive Ce anomalies in the partition coefficient patterns reveal preferential uptake of Ce, but to a lesser extent than in normal hydrogenetic crusts. A new parameter (excess Ce, Cexs) to quantify the degree of decoupling of Ce from REY(III) is established on the basis of partition coefficients. Cexs/Cebulk ratios suggest that the CIR crusts formed by precipitation of Fe-Mn oxides from a hydrothermal plume and that in hydrothermal plumes and normal seawater the enrichment of Ce results from the same oxidative sorption process. The growth rates, calculated with 230Thxs data as well as with the Co formula, are inversely related to Cexs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ipas India worked with Contact Base, a local organization, to develop street drama that highlights where and how safe abortion services, including medical abortion, can be obtained. Ipas works globally to increase women's ability to exercise their sexual and reproductive rights, and to reduce abortion-related deaths and injuries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report studies the principal paramters governing the distribution of iron-manganese concretions on the sea floor of the Indian Ocean, as well as their petrography and mineralogy. The results are mainly based on the recoveries made during voyages 31, 33 and 35 of the "Vityaz"' (1959-1962) and partly during voyages 36 and 41 (1964-1966). During these voyages samples of Mn concretions and Mn crust were collected (by bottom grabs, cores, trawlings, and dredgings) at 39 stations. The following account is devoted to the problems concerning the geochemistry of these concretions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.