950 resultados para Incident waves
Resumo:
In this research I focused on the propagation of acoustic rays in shallow water areas then I selected the Persian Gulf and described sound transmission in this region with emphasize on physical properties of water masses and of sediments. Finally I studied on the sound speed variations and sound attention with data collected from this area (NE of Farsi Island & 50 kilometers south of Delware). Sound speed deviation in western part of Strait of Hormuz in winter is between 20-30 m/s and it is between 5-20 m/s in the Oman Sea. Minimum sound speed deviation is at 23-24 degree north & 60-62 degree east. In spring, this deviation varies from 25-35 m/s, which is greater than in winter. In winter, at east of 56 degree east, greater speed are in shallow water coastal areas. In summer, sound speeds are greater than in spring and vary from 35 to 55 m/s at western part of Strait of Hormuz and 20 to 40 m/s in Oman Sea. Finally in autumn, sound speed deviation is 30-45 m/s west of 56 degree east and in Oman Sea is the same. The greatest attenuation rate caused by absorption in Bandar Dayer is between 17 to 27 meters depth, which is from water masses with different densities.
Resumo:
This paper focuses on the low-volume incident detection and subsequent driver warning objectives of the PORTICO project. It proposes Automatic Incident Detection (AID) which uses a multimodel approach comprised of a number of different algorithms. A set of thresholds and conditions are defined which determine which algorithm(s) need to indicate an incident under different traffic conditions in order to trigger an alarm
Resumo:
Interaction of ocean waves, currents and sea bed roughness is a complicated phenomena in fluid dynamic. This paper will describe the governing equations of motions of this phenomena in viscous and nonviscous conditions as well as study and analysis the experimental results of sets of physical models on waves, currents and artificial roughness, and consists of three parts: First, by establishing some typical patterns of roughness, the effects of sea bed roughness on a uniform current has been studied, as well as the manning coefficient of each type is reviewed to find the critical situation due to different arrangement. Second, the effect of roughness on wave parameters changes, such as wave height, wave length, and wave dispersion equations have been studied, third, superimposing, the waves + current + roughness patterns established in a flume, equipped with waves + currents generator, in this stage different analysis has been done to find the governing dimensionless numbers, and present the numbers to define the contortions and formulations of this phenomena. First step of the model is verified by the so called Chinese method, and the Second step by the Kamphius (1975), and third step by the van Rijn (1990) , and Brevik and Ass ( 1980), and in all cases reasonable agreements have been obtained. Finally new dimensionless parameters presented for this complicated phenomena.
Resumo:
Generally the flow properties of rivers, estuaries and coastal seas are highly dependent on the bed morphology. These include mainly three flow parameters, as bed shear stress, velocity profile and turbulent fluctuations. Here we investigate the effects of permeate of the bed on these flow properties We consider the effects of suction (W0) injection (W0) on these flow properties particularly the bottom stress. Four types of bottom permeability with different size of sand have been tested. The results indicate a substantial reduction and enhancement of the bed stress under respectively injection and suction as has been observed by others on wave motion in shallow seas. We consider 5 waves to shore with this rang of wave steepness ( 0/015 < so < 0/05 ) . Cr Calculated used of mansard method (1980). We search the stream line of current in bed with a video camera and looking this. Near the surface and the deep of bed and consider V=W (in or su)/ U(ru or rd) and bottom stress for 6 period of this study with Canly and Inman studies (1994). All these results are shown by curves with the effects of permeable bed.
Resumo:
The effect of swell on wind wave growth has been a topic of active research for many years with inconsistent results. The details are often contradictory among investigations. Further more, there remain a variety of competing theories to explain these phenomena. In this research, we consider waves and wind and temperature data in the Persian Gulf (Busher region) in years 1995, 1996 and 1999. This study provides estimations of wave conditions and the atmosphere stability that has an influence on wind wave. Results are also compared with data that have been recorded by a buoy in Caspian Sea (Neka region) during 1989. In the second part of this work we estimate non- dimensional energy and non-dimensional peak frequencies as a function of the non- dimensional fetch and Bulk Richardson numbers for the Persian Gulf (Busher region).This results also agree well with similar results for the Caspian Sea. The acquired relations can be used to compute the wind wave parameters. Also the results for the Persian Gulf show that the relationship of non-dimensional energy to as a function of wave age is independent of presence of swell. Finally the WAM model was run for the Persian Gulf during 3-8 September of 2002. The results show that swell on the Persian Gulf reduces the energy density of wind waves by up to 10%, but the growth rate at peak frequency is only reduced by up to 4%, and the spectral peak frequency is increased by only 1%.
Study and investigation of the various reactions of Mazandaran Province shoreline against wind waves
Resumo:
Determining of beach states and study of manner sediment transmission in beach profile, involves the evaluating the actions of hydrodynamic forces dominated over the beaches, in this research through determining the beach states by the help of Hanson and short method, different reactions of Mazandaran’s shoreline against wind waves was studied and investigated. For this reason, First, the kind of hydrodynamic forces dominated over the beaches of this province was studied and beaches of the this province was distinguished as wave–dominated beaches, afterwards eight stations are chosen throughout the shoreline and the waves qualities and the sediments regarding to different depth was evaluated in these stations by using software and laboratory actions. In this way the parameter of dimensionless fall velocity each station was calculated and the beach states and their changes according to time was studied. Finally, the gained information is located in the software area of Arc GIS, and the waves dynamics and the way of erosion and accretion was evaluated in each station. In this research by study of air photographs during a thirty years period we found that was no remarkable changes at shoreline in western and central parts and each type of change depends upon the delta, while eastern part of coast at the location of breakwaters in neighbouring of Farahabad Station, accretion features is quiet evident. In the main results of this research, it became obvious that the beach state in the stations Neca, Farahabad, Larim, Naftchal, Mazandaran university, Babolsar, Noor is dissipative and the beach in Nashtarood station is in intermediate (ridge and runnel) state to the extend that in the dissipation beaches from east to west, the degree of dissipation of the beaches is decreased continuously.
Resumo:
This thesis focuses on experimental and numerical studies of the hydrodynamic interaction between two vessels in close proximity in waves. In the model tests, two identical box-like models with round corners were used. Regular waves with the same wave steepness and different wave frequencies were generated. Six degrees of freedom body motions and wave elevations between bodies were measured in a head sea condition. Three initial gap widths were examined. In the numerical computations, a panel-free method based seakeeping program, MAPS0, and a panel method based program, WAMIT, were used for the prediction of body motions and wave elevations. The computed body motions and wave elevations were compared with experimental data.
Resumo:
Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.
Resumo:
U of I Only
Resumo:
The wave generation model based on the rapid distortion concept significantly underestimates empirical values of the wave growth rate. As suggested before, inclusion of the aerodynamic roughness modulations effect on the amplitude of the slope-correlated surface pressure could potentially reconcile this model approach with observations. This study explores the role of short-scale breaking modulations to amplify the growth rate of modulating longer waves. As developed, airflow separations from modulated breaking waves result in strong modulations of the turbulent stress in the inner region of the modulating waves. In turn, this leads to amplifying the slope-correlated surface pressure anomalies. As evaluated, such a mechanism can be very efficient for enhancing the wind-wave growth rate by a factor of 2-3.
Resumo:
The ocean bottom pressure records from eight stations of the Cascadia array are used to investigate the properties of short surface gravity waves with frequencies ranging from 0.2 to 5 Hz. It is found that the pressure spectrum at all sites is a well-defined function of the wind speed U10 and frequency f, with only a minor shift of a few dB from one site to another that can be attributed to variations in bottom properties. This observation can be combined with the theoretical prediction that the ocean bottom pressure spectrum is proportional to the surface gravity wave spectrum E(f) squared, times the overlap integral I(f) which is given by the directional wave spectrum at each frequency. This combination, using E(f) estimated from modeled spectra or parametric spectra, yields an overlap integral I(f) that is a function of the local wave age inline image. This function is maximum for f∕fPM = 8 and decreases by 10 dB for f∕fPM = 2 and f∕fPM = 30. This shape of I(f) can be interpreted as a maximum width of the directional wave spectrum at f∕fPM = 8, possibly equivalent to an isotropic directional spectrum, and a narrower directional distribution toward both the dominant low frequencies and the higher capillary-gravity wave frequencies.
Resumo:
We present a bidomain fire-diffuse-fire model that facilitates mathematical analysis of propagating waves of elevated intracellular calcium (Ca) in living cells. Modelling Ca release as a threshold process allows the explicit construction of travelling wave solutions to probe the dependence of Ca wave speed on physiologically important parameters such as the threshold for Ca release from the endoplasmic reticulum (ER) to the cytosol, the rate of Ca resequestration from the cytosol to the ER, and the total [Ca] (cytosolic plus ER). Interestingly, linear stability analysis of the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities leading to the emergence of Ca waves that propagate in a back-and-forth manner. Numerical simulations are used to confirm the presence of these so-called "tango waves" and the dependence of Ca wave speed on the total [Ca]. The original publication is available at www.springerlink.com (Journal of Mathematical Biology)
Resumo:
The poorly understood attenuation of surface waves in sea ice is generally attributed to the combination of scattering and dissipation. Scattering and dissipation have very different effects on the directional and temporal distribution of wave energy, making it possible to better understand their relative importance by analysis of swell directional spreading and arrival times. Here we compare results of a spectral wave model – using adjustable scattering and dissipation attenuation formulations – with wave measurements far inside the ice pack. In this case, scattering plays a negligible role in the attenuation of long swells. Specifically, scattering-dominated attenuation would produce directional wave spectra much broader than the ones recorded, and swell events arriving later and lasting much longer than observed. Details of the dissipation process remain uncertain. Average dissipation rates are consistent with creep effects but are 12 times those expected for a laminar boundary layer under a smooth solid ice plate.
Resumo:
A systematic study was conducted to elucidate the effects of acoustic perturbations on laminar diffusion line-flames and the conditions required to cause acoustically-driven extinction. Flames were produced from the fuels n-pentane, n-hexane, n-heptane, n-octane, and JP-8, using fuel-laden wicks. The wicks were housed inside of a burner whose geometry produced flames that approximated a two dimensional flame sheet. The acoustics utilized ranged in frequency between 30-50 Hz and acoustic pressures between 5-50 Pa. The unperturbed mass loss rate and flame height of the alkanes were studied, and they were found to scale in a linear manner consistent with Burke-Schumann. The mass loss rate of hexane-fueled flames experiencing acoustic perturbations was then studied. It was found that the strongest influence on the mass loss rate was the magnitude of oscillatory air movement experienced by the flame. Finally, acoustic perturbations were imposed on flames using all fuels to determine acoustic extinction criterion. Using the data collected, a model was developed which characterized the acoustic conditions required to cause flame extinction. The model was based on the ratio of an acoustic Nusselt Number to the Spalding B Number of the fuel, and it was found that at the minimum speaker power required to cause extinction this ratio was a constant. Furthermore, it was found that at conditions where the ratio was below this constant, a flame could still exist; at conditions where the ratio was greater than or equal to this constant, flame extinction always occurred.