925 resultados para Immunofluorescene localization
Resumo:
Internationalization of software as a previous step for localization is usually taken into account during early phases of the life-cycle of software development. However, the need to adapt software applications into different languages and cultural settings can appear once the application is finished and even in the market. In these cases, software localization implies a high cost of time and resources. This paper shows a real case of a existent software application, designed and developed without taking into account future necessities of localization, whose architecture and source code were modified to include the possibility of straightforward adaptation into new languages. The use of standard languages and advanced programming languages has permitted the authors to adapt the software in a simple and straightforward mode.
Resumo:
In terms of binary relations the author analyses the task of an individual consumers’ choice on the teaching excerpts set. It is suggested to analyse the function of consumer’s value as additive reduction. For localization of the vector of weighting coefficients of additive reduction the procedures based on metrics of object distance towards the ideal point are suggested.
Resumo:
We experimentally demonstrate Anderson localization for optical pulses in time domain, using a photonic mesh lattice implemented with coupled optical fiber loops. We also discuss interplay of photonic band-gaps and disorder in such lattices. © OSA 2015.
Resumo:
One of the most pressing demands on electrophysiology applied to the diagnosis of epilepsy is the non-invasive localization of the neuronal generators responsible for brain electrical and magnetic fields (the so-called inverse problem). These neuronal generators produce primary currents in the brain, which together with passive currents give rise to the EEG signal. Unfortunately, the signal we measure on the scalp surface doesn't directly indicate the location of the active neuronal assemblies. This is the expression of the ambiguity of the underlying static electromagnetic inverse problem, partly due to the relatively limited number of independent measures available. A given electric potential distribution recorded at the scalp can be explained by the activity of infinite different configurations of intracranial sources. In contrast, the forward problem, which consists of computing the potential field at the scalp from known source locations and strengths with known geometry and conductivity properties of the brain and its layers (CSF/meninges, skin and skull), i.e. the head model, has a unique solution. The head models vary from the computationally simpler spherical models (three or four concentric spheres) to the realistic models based on the segmentation of anatomical images obtained using magnetic resonance imaging (MRI). Realistic models – computationally intensive and difficult to implement – can separate different tissues of the head and account for the convoluted geometry of the brain and the significant inter-individual variability. In real-life applications, if the assumptions of the statistical, anatomical or functional properties of the signal and the volume in which it is generated are meaningful, a true three-dimensional tomographic representation of sources of brain electrical activity is possible in spite of the ‘ill-posed’ nature of the inverse problem (Michel et al., 2004). The techniques used to achieve this are now referred to as electrical source imaging (ESI) or magnetic source imaging (MSI). The first issue to influence reconstruction accuracy is spatial sampling, i.e. the number of EEG electrodes. It has been shown that this relationship is not linear, reaching a plateau at about 128 electrodes, provided spatial distribution is uniform. The second factor is related to the different properties of the source localization strategies used with respect to the hypothesized source configuration.
Resumo:
We make an comprehensive experimental and theoretical study of an effect of localization of light in photonic lattices realized in time domain with random optical potential. We show that localization occurs in whole range of disorder strength in full agreement with Anderson localization in 1D model. The disorder influence on modes structure is also discussed.
Resumo:
Aquatic toxins are responsible for a number of acute and chronic diseases in humans. Okadaic acid (OA) and other dinoflagellate derived polyketide toxins pose serious health risks on a global scale. Ingestion of OA contaminated shellfish causes diarrheic shellfish poisoning (DSP). Some evidence also suggests tumor promotion in the liver by OA. Microcystin-LR (MC-LR) is produced by cyanobacteria and is believed to be the most common freshwater toxin in the US. Humans may be exposed to this acute hepatotoxin through drinking or recreational use of contaminated waters. ^ OA producing dinoflagellates have not been cultured axenically. The presence of associated bacteria raises questions about the ultimate source of OA. Identification of the toxin-producing organism(s) is the first step in identifying the biosynthetic pathways involved in toxin production. Polyketide synthase (PKS) genes of toxic and non-toxic species were surveyed by construction of clonal libraries from PCR amplicons of various toxic and non-toxic species of Prorocentrum in an effort to identify genes, which may be part of the biosynthetic pathway of OA. Analysis of the PKS sequences revealed that toxic species shared identical PKS genes not present in non-toxic species. Interestingly, the same PKS genes were identified in a library constructed from associated bacteria. ^ Subsequent bacterial small subunit RNA (16S) clonal libraries identified several common bacterial species. The most frequent 16S sequences found were identified as species of the genus Roseobacter which has previously been implicated in the production of OA. Attempts to culture commonly occurring bacteria resulted in the isolation of Oceanicaulis alexandrii , a novel marine bacterium previously isolated from the dinoflagellate Alexandrium tamarense, from both P. lima, and P. hoffmanianum. ^ Metabolic studies of microcystin-LR, were conducted to probe the activity of the major human liver cytochromes (CYP) towards the toxin. CYPs may provide alternate routes of detoxification of toxins when the usual routes have been inhibited. For example, some research indicates that cyanobacterial xenobiotics, in particular, lipopolysaccharides may inhibit glutathione S-transferases allowing the toxin to persist long enough to be acted upon by other enzymes. These studies found that at least one human liver CYP was capable of metabolizing the toxin. ^
Resumo:
The premise of this dissertation is to create a highly integrated platform that combines the most current recording technologies for brain research through the development of new algorithms for three-dimensional (3D) functional mapping and 3D source localization. The recording modalities that were integrated include: Electroencephalography (EEG), Optical Topographic Maps (OTM), Magnetic Resonance Imaging (MRI), and Diffusion Tensor Imaging (DTI). This work can be divided into two parts: The first part involves the integration of OTM with MRI, where the topographic maps are mapped to both the skull and cortical surface of the brain. This integration process is made possible through the development of new algorithms that determine the probes location on the MRI head model and warping the 2D topographic maps onto the 3D MRI head/brain model. Dynamic changes of the brain activation can be visualized on the MRI head model through a graphical user interface. The second part of this research involves augmenting a fiber tracking system, by adding the ability to integrate the source localization results generated by commercial software named Curry. This task involved registering the EEG electrodes and the dipole results to the MRI data. Such Integration will allow the visualization of fiber tracts, along with the source of the EEG, in a 3D transparent brain structure. The research findings of this dissertation were tested and validated through the participation of patients from Miami Children Hospital (MCH). Such an integrated platform presented to the medical professionals in the form of a user-friendly graphical interface is viewed as a major contribution of this dissertation. It should be emphasized that there are two main aspects to this research endeavor: (1) if a dipole could be situated in time at its different positions, its trajectory may reveal additional information on the extent and nature of the brain malfunction; (2) situating such a dipole trajectory with respect to the fiber tracks could ensure the preservation of these fiber tracks (axons) during surgical interventions, preserving as a consequence these parts of the brain that are responsible for information transmission.
Resumo:
Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. ^ It was initially found that comparing to wild type cells, gsk3 - cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. ^ I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.^
Resumo:
I would like to thank Dr. Philip Stoddard for his patience and guidance throughout the past four years. He has not only taught me about behavior and electricity, but he has also taught me how to think scientifically. Vielka Salazar for making herself available to answer my questions and to help me with my projects. Montserrat Alfaro for providing me with support under times of frustration. Fabian A. Pal, who has often made himself available when I needed help to finish my projects, for being supportive, and for believing in me and my abilities. Most importantly, I would like to thank my parents who have shown tremendous support and patience during the past years. I would also like to thank the Honors Committee, specially Dr. Richards for taking the time to review my thesis and helping me modify it. Finally, I would like to thank the MARC program for providing me with financial assistance and the opportunity to perform this project.
Resumo:
The main focus of this thesis is to address the relative localization problem of a heterogenous team which comprises of both ground and micro aerial vehicle robots. This team configuration allows to combine the advantages of increased accessibility and better perspective provided by aerial robots with the higher computational and sensory resources provided by the ground agents, to realize a cooperative multi robotic system suitable for hostile autonomous missions. However, in such a scenario, the strict constraints in flight time, sensor pay load, and computational capability of micro aerial vehicles limits the practical applicability of popular map-based localization schemes for GPS denied navigation. Therefore, the resource limited aerial platforms of this team demand simpler localization means for autonomous navigation. Relative localization is the process of estimating the formation of a robot team using the acquired inter-robot relative measurements. This allows the team members to know their relative formation even without a global localization reference, such as GPS or a map. Thus a typical robot team would benefit from a relative localization service since it would allow the team to implement formation control, collision avoidance, and supervisory control tasks, independent of a global localization service. More importantly, a heterogenous team such as ground robots and computationally constrained aerial vehicles would benefit from a relative localization service since it provides the crucial localization information required for autonomous operation of the weaker agents. This enables less capable robots to assume supportive roles and contribute to the more powerful robots executing the mission. Hence this study proposes a relative localization-based approach for ground and micro aerial vehicle cooperation, and develops inter-robot measurement, filtering, and distributed computing modules, necessary to realize the system. The research study results in three significant contributions. First, the work designs and validates a novel inter-robot relative measurement hardware solution which has accuracy, range, and scalability characteristics, necessary for relative localization. Second, the research work performs an analysis and design of a novel nonlinear filtering method, which allows the implementation of relative localization modules and attitude reference filters on low cost devices with optimal tuning parameters. Third, this work designs and validates a novel distributed relative localization approach, which harnesses the distributed computing capability of the team to minimize communication requirements, achieve consistent estimation, and enable efficient data correspondence within the network. The work validates the complete relative localization-based system through multiple indoor experiments and numerical simulations. The relative localization based navigation concept with its sensing, filtering, and distributed computing methods introduced in this thesis complements system limitations of a ground and micro aerial vehicle team, and also targets hostile environmental conditions. Thus the work constitutes an essential step towards realizing autonomous navigation of heterogenous teams in real world applications.
Resumo:
Considering the disorder caused in manganites by the substitution Mn→Fe or Ga, we accomplish a systematic study of doped manganites begun in previous papers. To this end, a disordered model is formulated and solved using the variational mean-field technique. The subtle interplay between double exchange, superexchange, and disorder causes similar effects on the dependence of T_(C) on the percentage of Mn substitution in the cases considered. Yet, in La_(2/3)Ca_(1/3)Mn_(1-y)Ga_(y)O_(3) our results suggest a quantum critical point (QCP) for y ≈ 0.1–0.2, associated to the localization of the electronic states of the conduction band. In the case of La_(x)Ca_(x)Mn_(1-y)Fe_(y)O_(3) (with x = 1/3,3/8) no such QCP is expected.
Resumo:
Peer reviewed
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
We propose a mathematically well-founded approach for locating the source (initial state) of density functions evolved within a nonlinear reaction-diffusion model. The reconstruction of the initial source is an ill-posed inverse problem since the solution is highly unstable with respect to measurement noise. To address this instability problem, we introduce a regularization procedure based on the nonlinear Landweber method for the stable determination of the source location. This amounts to solving a sequence of well-posed forward reaction-diffusion problems. The developed framework is general, and as a special instance we consider the problem of source localization of brain tumors. We show numerically that the source of the initial densities of tumor cells are reconstructed well on both imaging data consisting of simple and complex geometric structures.