999 resultados para IRIDIUM OXIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to explore new highly organic electroluminescent materials, six symmetrical aromatic oxide-oxadiazoles containing pyridine ring 4a similar to 4f were synthesized through cyclization of substituted benzoic acid (2) with 2,6-dihydrazide pyridine (3) by "one-pot" method in POCl3. Their structures were confirmed by MS, IR, H-1 NMR techniques and elemental analysis. The fluorescence spectra of the target compounds showed that the A,m ranged from 347 to 507 nm, and the maximum A,m were close to 384 nm, which showed that these compounds have good fluorescence with strong fluorescence intensity. When the 5-Br group was introduced into the aromatic ring (4e and 4f), the fluorescent emission wavelength took place Einstein shift, and the fluorescent intensity decreased a little. Using quinine bisulphate as a reference, the fluorescence quantum yields were all tested, and the introduction of 5-Br group had no visible effect on fluorescence quantum yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene oxide)-b-poly(2-hydroxyethyl methacrylate) (PEO-b-PHEMA) was synthesized by successive atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate(HEMA) monomer using PEO-Br macroinitiator as initiator, CuBr/CuBr2 and 2,2.-bipyridyl (bpy) as catalyst and ligand. IR, H-1 NMR, and GPC analysis indicate that PEO-b-PHEMA block copolymer with low polydispersity index (M-w/M-n approximate to 1.1) has been formed. Self-assembly of this double hydrophilic block copolymer in the selective solvent and water was also studied. Owing to the high hydrophilic nature of the PEO and PHEMA blocks, this double hydrophilic block copolymer cannot disperse well in water. So block copolymer was modified by part esterification of PEO-b-PHEMA with acetic anhydride, which increased the hydrophobic group of the PHEMA block. The TEM results show that this block copolymer spontaneously form well-defined micelles in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing tungsten oxide (WO3) doped N,N-'-di(naphthalen-1-yl)-N,N-'-diphenyl-benzidine (NPB) hole injection layer, the great improvement in device efficiency and the organic film morphology stability at high temperature were realized for organic light-emitting diodes (OLEDs). The detailed investigations on the improvement mechanism by optical, electric, and film morphology properties were presented. The experimental results clearly demonstrated that using WO3 doped NPB as the hole injection layer in OLEDs not only reduced the hole injection barrier and enhanced the transport property, leading to low operational voltage and high efficiency, but also improved organic film morphology stability, which should be related to the device stability. It could be seen that due to the utilization of WO3 doped NPB hole injection layer in NPB/tris (8-quinolinolato) aluminum (Alq(3))-based device, the maximum efficiency reached 6.1 cd A(-1) and 4.8 lm W-1, which were much higher than 4.5 cd A(-1) and 1.1 lm W-1 of NPB/Alq(3) device without hole injection layer. The device with WO3 doped NPB hole injection layer yet gave high efficiency of 6.1 cd A(-1) (2.9 lm W-1) even though the device was fabricated at substrate temperature of 80 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2[3-(N-plienylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of single-component cobalt salen complexes, N,N'-bis(salicylidene)-1,2phenylenediamino cobaltIII X(X = Cl (1a), Br (1b), NO3 (1c), CF3COO (1d), BF4 (le), and N3 (If)) (SalphCoX), were prepared for alternating copolymerization of carbon dioxide and propylene oxide(PO) under mild condition. The axial anion X group of the SalenphCoX played important role in tailoring the catalytic activity, polymeric/cyclic carbonate selectivity, as well as stereochemistry of carbonate unit sequence in the polymer chain. SalenphCoX with an electron-withdrawing axial X group (complex 1c) was an ideal catalyst for the copolymerization of CO2 and PO to selectively produce polycarbonate with similar to 99% carbonate linkage and over 81% head-to-tail structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium, iridium, and rhodium complexes of 2-methyleneimidazolines have been synthesized by selective phosphine-assisted activation of the 2-methyl C-H bonds in 2-methylimidazolium compounds. Metallacycles of various sizes were obtained in the reaction of phosphine-tethered 2-methylimidazolium compounds and [{M(cod)X}(2)] (M = Rh or Ir cod = 1,5-cyclooctadiene: X = alkoxyl or Cl). representative complexes were characterized by X-ray crystallography. The selectivity for aliphatic C(sp(3))H versus aromatic C(sp(2))H activation could be adjusted by means of the steric bulk of the OR ligand, whereby a bulky, OR group favors activation of the 2-methyl C(sp(3))-H bond. Experimental results confirmed that a methyl C-H activation product (a seven-membered iridacycle) is the kinetic product, while the aryl C-H activation product (a six-membered iridacycle) is the thermodynamic product.