939 resultados para Hypergraph Partitioning
Resumo:
Mixed criticality systems emerges as a suitable solution for dealing with the complexity, performance and costs of future embedded and dependable systems. However, this paradigm adds additional complexity to their development. This paper proposes an approach for dealing with this scenario that relies on hardware virtualization and Model-Driven Engineering (MDE). Hardware virtualization ensures isolation between subsystems with different criticality levels. MDE is intended to bridge the gap between design issues and partitioning concerns. MDE tooling will enhance the functional models by annotating partitioning and extra-functional properties. System partitioning and subsystems allocation will be generated with a high degree of automation. System configuration will be validated for ensuring that the resources assigned to a partition are sufficient for executing the allocated software components and that time requirements are met.
Resumo:
Partitioning is a common approach to developing mixed-criticality systems, where partitions are isolated from each other both in the temporal and the spatial domain in order to prevent low-criticality subsystems from compromising other subsystems with high level of criticality in case of misbehaviour. The advent of many-core processors, on the other hand, opens the way to highly parallel systems in which all partitions can be allocated to dedicated processor cores. This trend will simplify processor scheduling, although other issues such as mutual interference in the temporal domain may arise as a consequence of memory and device sharing. The paper describes an architecture for multi-core partitioned systems including critical subsystems built with the Ada Ravenscar profile. Some implementation issues are discussed, and experience on implementing the ORK kernel on the XtratuM partitioning hypervisor is presented.
Resumo:
An accepted fact in software engineering is that software must undergo verification and validation process during development to ascertain and improve its quality level. But there are too many techniques than a single developer could master, yet, it is impossible to be certain that software is free of defects. So, it is crucial for developers to be able to choose from available evaluation techniques, the one most suitable and likely to yield optimum quality results for different products. Though, some knowledge is available on the strengths and weaknesses of the available software quality assurance techniques but not much is known yet on the relationship between different techniques and contextual behavior of the techniques. Objective: This research investigates the effectiveness of two testing techniques ? equivalence class partitioning and decision coverage and one review technique ? code review by abstraction, in terms of their fault detection capability. This will be used to strengthen the practical knowledge available on these techniques.
Resumo:
The verification and validation activity plays a fundamental role in improving software quality. Determining which the most effective techniques for carrying out this activity are has been an aspiration of experimental software engineering researchers for years. This paper reports a controlled experiment evaluating the effectiveness of two unit testing techniques (the functional testing technique known as equivalence partitioning (EP) and the control-flow structural testing technique known as branch testing (BT)). This experiment is a literal replication of Juristo et al. (2013).Both experiments serve the purpose of determining whether the effectiveness of BT and EP varies depending on whether or not the faults are visible for the technique (InScope or OutScope, respectively). We have used the materials, design and procedures of the original experiment, but in order to adapt the experiment to the context we have: (1) reduced the number of studied techniques from 3 to 2; (2) assigned subjects to experimental groups by means of stratified randomization to balance the influence of programming experience; (3) localized the experimental materials and (4) adapted the training duration. We ran the replication at the Escuela Politécnica del Ejército Sede Latacunga (ESPEL) as part of a software verification & validation course. The experimental subjects were 23 master?s degree students. EP is more effective than BT at detecting InScope faults. The session/program andgroup variables are found to have significant effects. BT is more effective than EP at detecting OutScope faults. The session/program and group variables have no effect in this case. The results of the replication and the original experiment are similar with respect to testing techniques. There are some inconsistencies with respect to the group factor. They can be explained by small sample effects. The results for the session/program factor are inconsistent for InScope faults.We believe that these differences are due to a combination of the fatigue effect and a technique x program interaction. Although we were able to reproduce the main effects, the changes to the design of the original experiment make it impossible to identify the causes of the discrepancies for sure. We believe that further replications closely resembling the original experiment should be conducted to improve our understanding of the phenomena under study.
Resumo:
La Ingeniería del Software Empírico (ISE) utiliza como herramientas los estudios empíricos para conseguir evidencias que ayuden a conocer bajo qué circunstancias es mejor usar una tecnología software en lugar de otra. La investigación en la que se enmarca este TFM explora si las intuiciones y/o preferencias de las personas que realizan las pruebas de software, son capaces de predecir la efectividad de tres técnicas de evaluación de código: lectura por abstracciones sucesivas, cobertura de decisión y partición en clases de equivalencia. Para conseguir dicho objetivo, se analizan los datos recogidos en un estudio empírico, realizado por las tutoras de este TFM. En el estudio empírico distintos sujetos aplican las tres técnicas de evaluación de código a tres programas distintos, a los que se les habían introducido una serie de faltas artificialmente. Los sujetos deben reportar los fallos encontrados en los programas, así como, contestar a una serie de preguntas sobre sus intuiciones y preferencias. A la hora de analizar los datos del estudio, se ha comprobado: 1) cuáles son sus intuiciones y preferencias (mediante el test estadístico X2 de Pearson); 2) si los sujetos cambian de opinión después de aplicar las técnicas (para ello se ha utilizado índice de Kappa, el Test de McNemar-Bowker y el Test de Stuart-Maxwell); 3) la consistencia de las distintas preguntas (mediante el índice de Kappa), comparando: intuiciones con intuiciones, preferencias con preferencias e intuiciones con preferencias; 4) Por último, si hay coincidencia entre las intuiciones y preferencias con la efectividad real obtenida (para ello se ha utilizado, el Modelo Lineal General con medidas repetidas). Los resultados muestran que, no hay una intuición clara ni tampoco una preferencia concreta, con respecto a los programas. Además aunque existen cambios de opinión después de aplicar las técnicas, no se encuentran evidencias claras para afirmar que la intuición y preferencias influyen en su efectividad. Finalmente, existen relaciones entre las intuiciones con intuiciones, preferencias con preferencias e intuiciones con preferencias, además esta relación es más notoria después de aplicar las técnicas. ----ABSTRACT----Empirical Software Engineering (ESE) uses empirical studies as a mean to generate evidences to help determine under what circumstances it is convenient to use a given software technology. This Master Thesis is part of a research that explores whether intuitions and/or preferences of testers, can be used to predict the effectiveness of three code evaluation techniques: reading by stepwise abstractions, decision coverage and equivalence partitioning. To achieve this goal, this Master Thesis analyzes the data collected in an empirical study run by the tutors. In the empirical study, different subjects apply three code evaluation techniques to three different programs. A series of faults were artificially introduced to the programs. Subjects are required to report the defects found in the programs, as well as answer a series of questions about their intuitions and preferences. The data analyses test: 1) what are the intuitions and preferences of the subjects (using the Pearson X2 test); 2) whether subjects change their minds after applying the techniques (using the Kappa coefficient, McNemar-Bowker test, and Stuart-Maxwell test); 3) the consistency of the different questions, comparing: intuitions versus intuitions, preferences versus preferences and preferences versus intuitions (using the Kappa coefficient); 4) finally, if intuitions and/or preferences predict the actual effectiveness obtained (using the General Linear Model, repeated measures). The results show that there is not clear intuition or particular preference with respect to the programs. Moreover, although there are changes of mind after applying the techniques, there are not clear evidences to claim that intuition and preferences influence their effectiveness. Finally, there is a relationship between the intuitions versus intuitions, preferences versus preferences and intuitions versus preferences; this relationship is more noticeable after applying the techniques.
Resumo:
An in vitro experiment was carried out using the Hohenheim gas production technique to evaluate 24-h gas production, apparently and truly degraded dry matter (DM), partitioning factor (PF), short chain fatty acids, crude protein (CP) and carbohydrate (CHO) fractionation of grass and multipurpose tree species (MPTS) foliage diets. Four grasses and three MPTS were used to formulate 12 diets of equal mixtures (0.5:0.5 on DM basis) of each grass with each MPTS. In vitro gas production was terminated after 24 h for each diet. True DM degradability was measured from incubated samples and combined with gas volume to estimate PF. Diets had greater (P<0.001) CP (102–183 g/kg DM) content than sole grasses (66–131 g/kg DM) and lower (P<0.001) concentrations of fibre fractions. Contrary to in vitro apparently degraded DM, in vitro truly degraded DM coefficient was greater (P<0.001) in diets (0.63–0.77) than in sole grasses (0.48–0.68). The PF was on average higher in diets than in sole grasses. The proportion of potentially degradable CP fractions (A1, B1, B2 and B3, based on the Cornell Net Carbohydrate and Protein System) in the diets ranged from 971 to 989 g/kg CP. Crude protein fractions, A and B2 were greater in diets but B1 and B3 fractions were less in diets than in sole grasses. A similar trend was also observed in the CHO fractions. Results showed that the nutritive value of the four grasses was improved when MPTS leaves were incorporated into the diet and this could ensure higher productivity of the animals.
Resumo:
Three components of carbon allocation, biomass, flux, and partitioning, were measured in two contrasting Amazon forests growing under similar climatic conditions. Allocation to aboveground compartments was highest in a high-stature forest growing on clay soils, while allocation to fine roots was higher in a short-stature forest growing on white sands. Differences in carbon allocation components where not proportional between the two forests, with soils controlling a trade-off between allocation to fine roots versus aboveground parts.
Resumo:
The verification and validation activity plays a fundamental role in improving software quality. Determining which the most effective techniques for carrying out this activity are has been an aspiration of experimental software engineering researchers for years. This paper reports a controlled experiment evaluating the effectiveness of two unit testing techniques (the functional testing technique known as equivalence partitioning (EP) and the control-flow structural testing technique known as branch testing (BT)). This experiment is a literal replication of Juristo et al. (2013). Both experiments serve the purpose of determining whether the effectiveness of BT and EP varies depending on whether or not the faults are visible for the technique (InScope or OutScope, respectively). We have used the materials, design and procedures of the original experiment, but in order to adapt the experiment to the context we have: (1) reduced the number of studied techniques from 3 to 2; (2) assigned subjects to experimental groups by means of stratified randomization to balance the influence of programming experience; (3) localized the experimental materials and (4) adapted the training duration. We ran the replication at the Escuela Polite?cnica del Eje?rcito Sede Latacunga (ESPEL) as part of a software verification & validation course. The experimental subjects were 23 master?s degree students. EP is more effective than BT at detecting InScope faults. The session/program and group variables are found to have significant effects. BT is more effective than EP at detecting OutScope faults. The session/program and group variables have no effect in this case. The results of the replication and the original experiment are similar with respect to testing techniques. There are some inconsistencies with respect to the group factor. They can be explained by small sample effects. The results for the session/program factor are inconsistent for InScope faults. We believe that these differences are due to a combination of the fatigue effect and a technique x program interaction. Although we were able to reproduce the main effects, the changes to the design of the original experiment make it impossible to identify the causes of the discrepancies for sure. We believe that further replications closely resembling the original experiment should be conducted to improve our understanding of the phenomena under study.
Resumo:
An understanding of spatial patterns of plant species diversity and the factors that drive those patterns is critical for the development of appropriate biodiversity management in forest ecosystems. We studied the spatial organization of plants species in human- modified and managed oak forests (primarily, Quercus faginea) in the Central Pre- Pyrenees, Spain. To test whether plant community assemblages varied non-randomly across the spatial scales, we used multiplicative diversity partitioning based on a nested hierarchical design of three increasingly coarser spatial scales (transect, stand, region). To quantify the importance of the structural, spatial, and topographical characteristics of stands in patterning plant species assemblages and identify the determinants of plant diversity patterns, we used canonical ordination. We observed a high contribution of ˟-diversity to total -diversity and found ˟-diversity to be higher and ˞-diversity to be lower than expected by random distributions of individuals at different spatial scales. Results, however, partly depended on the weighting of rare and abundant species. Variables expressing the historical management intensities of the stand such as mean stand age, the abundance of the dominant tree species (Q. faginea), age structure of the stand, and stand size were the main factors that explained the compositional variation in plant communities. The results indicate that (1) the structural, spatial, and topographical characteristics of the forest stands have the greatest effect on diversity patterns, (2) forests in landscapes that have different land use histories are environmentally heterogeneous and, therefore, can experience high levels of compositional differentiation, even at local scales (e.g., within the same stand). Maintaining habitat heterogeneity at multiple spatial scales should be considered in the development of management plans for enhancing plant diversity and related functions in human-altered forests
Resumo:
The development of mixed-criticality virtualized multi-core systems poses new challenges that are being subject of active research work. There is an additional complexity: it is now required to identify a set of partitions, and allocate applications to partitions. In this job, a number of issues have to be considered, such as the criticality level of the application, security and dependability requirements, time requirements granularity, etc. MultiPARTES [11] toolset relies on Model Driven Engineering (MDE), which is a suitable approach in this setting, as it helps to bridge the gap between design issues and partitioning concerns. MDE is changing the way systems are developed nowadays, reducing development time. In general, modelling approaches have shown their benefits when applied to embedded systems. These benefits have been achieved by fostering reuse with an intensive use of abstractions, or automating the generation of boiler-plate code.
Resumo:
The current approach to developing mixed-criticality sys- tems is by partitioning the hardware resources (processors, memory and I/O devices) among the different applications. Partitions are isolated from each other both in the temporal and the spatial domain, so that low-criticality applications cannot compromise other applications with a higher level of criticality in case of misbehaviour. New architectures based on many-core processors open the way to highly parallel systems in which each partition can be allocated to a set of dedicated proces- sor cores, thus simplifying partition scheduling and temporal separation. Moreover, spatial isolation can also benefit from many-core architectures, by using simpler hardware mechanisms to protect the address spaces of different applications. This paper describes an architecture for many- core embedded partitioned systems, together with some implementation advice for spatial isolation.
Resumo:
The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 ± 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach.
Resumo:
In this paper we define the notion of an axiom dependency hypergraph, which explicitly represents how axioms are included into a module by the algorithm for computing locality-based modules. A locality-based module of an ontology corresponds to a set of connected nodes in the hypergraph, and atoms of an ontology to strongly connected components. Collapsing the strongly connected components into single nodes yields a condensed hypergraph that comprises a representation of the atomic decomposition of the ontology. To speed up the condensation of the hypergraph, we first reduce its size by collapsing the strongly connected components of its graph fragment employing a linear time graph algorithm. This approach helps to significantly reduce the time needed for computing the atomic decomposition of an ontology. We provide an experimental evaluation for computing the atomic decomposition of large biomedical ontologies. We also demonstrate a significant improvement in the time needed to extract locality-based modules from an axiom dependency hypergraph and its condensed version.
Resumo:
Los sistemas empotrados son cada día más comunes y complejos, de modo que encontrar procesos seguros, eficaces y baratos de desarrollo software dirigidos específicamente a esta clase de sistemas es más necesario que nunca. A diferencia de lo que ocurría hasta hace poco, en la actualidad los avances tecnológicos en el campo de los microprocesadores de los últimos tiempos permiten el desarrollo de equipos con prestaciones más que suficientes para ejecutar varios sistemas software en una única máquina. Además, hay sistemas empotrados con requisitos de seguridad (safety) de cuyo correcto funcionamiento depende la vida de muchas personas y/o grandes inversiones económicas. Estos sistemas software se diseñan e implementan de acuerdo con unos estándares de desarrollo software muy estrictos y exigentes. En algunos casos puede ser necesaria también la certificación del software. Para estos casos, los sistemas con criticidades mixtas pueden ser una alternativa muy valiosa. En esta clase de sistemas, aplicaciones con diferentes niveles de criticidad se ejecutan en el mismo computador. Sin embargo, a menudo es necesario certificar el sistema entero con el nivel de criticidad de la aplicación más crítica, lo que hace que los costes se disparen. La virtualización se ha postulado como una tecnología muy interesante para contener esos costes. Esta tecnología permite que un conjunto de máquinas virtuales o particiones ejecuten las aplicaciones con unos niveles de aislamiento tanto temporal como espacial muy altos. Esto, a su vez, permite que cada partición pueda ser certificada independientemente. Para el desarrollo de sistemas particionados con criticidades mixtas se necesita actualizar los modelos de desarrollo software tradicionales, pues estos no cubren ni las nuevas actividades ni los nuevos roles que se requieren en el desarrollo de estos sistemas. Por ejemplo, el integrador del sistema debe definir las particiones o el desarrollador de aplicaciones debe tener en cuenta las características de la partición donde su aplicación va a ejecutar. Tradicionalmente, en el desarrollo de sistemas empotrados, el modelo en V ha tenido una especial relevancia. Por ello, este modelo ha sido adaptado para tener en cuenta escenarios tales como el desarrollo en paralelo de aplicaciones o la incorporación de una nueva partición a un sistema ya existente. El objetivo de esta tesis doctoral es mejorar la tecnología actual de desarrollo de sistemas particionados con criticidades mixtas. Para ello, se ha diseñado e implementado un entorno dirigido específicamente a facilitar y mejorar los procesos de desarrollo de esta clase de sistemas. En concreto, se ha creado un algoritmo que genera el particionado del sistema automáticamente. En el entorno de desarrollo propuesto, se han integrado todas las actividades necesarias para desarrollo de un sistema particionado, incluidos los nuevos roles y actividades mencionados anteriormente. Además, el diseño del entorno de desarrollo se ha basado en la ingeniería guiada por modelos (Model-Driven Engineering), la cual promueve el uso de los modelos como elementos fundamentales en el proceso de desarrollo. Así pues, se proporcionan las herramientas necesarias para modelar y particionar el sistema, así como para validar los resultados y generar los artefactos necesarios para el compilado, construcción y despliegue del mismo. Además, en el diseño del entorno de desarrollo, la extensión e integración del mismo con herramientas de validación ha sido un factor clave. En concreto, se pueden incorporar al entorno de desarrollo nuevos requisitos no-funcionales, la generación de nuevos artefactos tales como documentación o diferentes lenguajes de programación, etc. Una parte clave del entorno de desarrollo es el algoritmo de particionado. Este algoritmo se ha diseñado para ser independiente de los requisitos de las aplicaciones así como para permitir al integrador del sistema implementar nuevos requisitos del sistema. Para lograr esta independencia, se han definido las restricciones al particionado. El algoritmo garantiza que dichas restricciones se cumplirán en el sistema particionado que resulte de su ejecución. Las restricciones al particionado se han diseñado con una capacidad expresiva suficiente para que, con un pequeño grupo de ellas, se puedan expresar la mayor parte de los requisitos no-funcionales más comunes. Las restricciones pueden ser definidas manualmente por el integrador del sistema o bien pueden ser generadas automáticamente por una herramienta a partir de los requisitos funcionales y no-funcionales de una aplicación. El algoritmo de particionado toma como entradas los modelos y las restricciones al particionado del sistema. Tras la ejecución y como resultado, se genera un modelo de despliegue en el que se definen las particiones que son necesarias para el particionado del sistema. A su vez, cada partición define qué aplicaciones deben ejecutar en ella así como los recursos que necesita la partición para ejecutar correctamente. El problema del particionado y las restricciones al particionado se modelan matemáticamente a través de grafos coloreados. En dichos grafos, un coloreado propio de los vértices representa un particionado del sistema correcto. El algoritmo se ha diseñado también para que, si es necesario, sea posible obtener particionados alternativos al inicialmente propuesto. El entorno de desarrollo, incluyendo el algoritmo de particionado, se ha probado con éxito en dos casos de uso industriales: el satélite UPMSat-2 y un demostrador del sistema de control de una turbina eólica. Además, el algoritmo se ha validado mediante la ejecución de numerosos escenarios sintéticos, incluyendo algunos muy complejos, de más de 500 aplicaciones. ABSTRACT The importance of embedded software is growing as it is required for a large number of systems. Devising cheap, efficient and reliable development processes for embedded systems is thus a notable challenge nowadays. Computer processing power is continuously increasing, and as a result, it is currently possible to integrate complex systems in a single processor, which was not feasible a few years ago.Embedded systems may have safety critical requirements. Its failure may result in personal or substantial economical loss. The development of these systems requires stringent development processes that are usually defined by suitable standards. In some cases their certification is also necessary. This scenario fosters the use of mixed-criticality systems in which applications of different criticality levels must coexist in a single system. In these cases, it is usually necessary to certify the whole system, including non-critical applications, which is costly. Virtualization emerges as an enabling technology used for dealing with this problem. The system is structured as a set of partitions, or virtual machines, that can be executed with temporal and spatial isolation. In this way, applications can be developed and certified independently. The development of MCPS (Mixed-Criticality Partitioned Systems) requires additional roles and activities that traditional systems do not require. The system integrator has to define system partitions. Application development has to consider the characteristics of the partition to which it is allocated. In addition, traditional software process models have to be adapted to this scenario. The V-model is commonly used in embedded systems development. It can be adapted to the development of MCPS by enabling the parallel development of applications or adding an additional partition to an existing system. The objective of this PhD is to improve the available technology for MCPS development by providing a framework tailored to the development of this type of system and by defining a flexible and efficient algorithm for automatically generating system partitionings. The goal of the framework is to integrate all the activities required for developing MCPS and to support the different roles involved in this process. The framework is based on MDE (Model-Driven Engineering), which emphasizes the use of models in the development process. The framework provides basic means for modeling the system, generating system partitions, validating the system and generating final artifacts. The framework has been designed to facilitate its extension and the integration of external validation tools. In particular, it can be extended by adding support for additional non-functional requirements and support for final artifacts, such as new programming languages or additional documentation. The framework includes a novel partitioning algorithm. It has been designed to be independent of the types of applications requirements and also to enable the system integrator to tailor the partitioning to the specific requirements of a system. This independence is achieved by defining partitioning constraints that must be met by the resulting partitioning. They have sufficient expressive capacity to state the most common constraints and can be defined manually by the system integrator or generated automatically based on functional and non-functional requirements of the applications. The partitioning algorithm uses system models and partitioning constraints as its inputs. It generates a deployment model that is composed by a set of partitions. Each partition is in turn composed of a set of allocated applications and assigned resources. The partitioning problem, including applications and constraints, is modeled as a colored graph. A valid partitioning is a proper vertex coloring. A specially designed algorithm generates this coloring and is able to provide alternative partitions if required. The framework, including the partitioning algorithm, has been successfully used in the development of two industrial use cases: the UPMSat-2 satellite and the control system of a wind-power turbine. The partitioning algorithm has been successfully validated by using a large number of synthetic loads, including complex scenarios with more that 500 applications.
Resumo:
Los hipergrafos dirigidos se han empleado en problemas relacionados con lógica proposicional, bases de datos relacionales, linguística computacional y aprendizaje automático. Los hipergrafos dirigidos han sido también utilizados como alternativa a los grafos (bipartitos) dirigidos para facilitar el estudio de las interacciones entre componentes de sistemas complejos que no pueden ser fácilmente modelados usando exclusivamente relaciones binarias. En este contexto, este tipo de representación es conocida como hiper-redes. Un hipergrafo dirigido es una generalización de un grafo dirigido especialmente adecuado para la representación de relaciones de muchos a muchos. Mientras que una arista en un grafo dirigido define una relación entre dos de sus nodos, una hiperarista en un hipergrafo dirigido define una relación entre dos conjuntos de sus nodos. La conexión fuerte es una relación de equivalencia que divide el conjunto de nodos de un hipergrafo dirigido en particiones y cada partición define una clase de equivalencia conocida como componente fuertemente conexo. El estudio de los componentes fuertemente conexos de un hipergrafo dirigido puede ayudar a conseguir una mejor comprensión de la estructura de este tipo de hipergrafos cuando su tamaño es considerable. En el caso de grafo dirigidos, existen algoritmos muy eficientes para el cálculo de los componentes fuertemente conexos en grafos de gran tamaño. Gracias a estos algoritmos, se ha podido averiguar que la estructura de la WWW tiene forma de “pajarita”, donde más del 70% del los nodos están distribuidos en tres grandes conjuntos y uno de ellos es un componente fuertemente conexo. Este tipo de estructura ha sido también observada en redes complejas en otras áreas como la biología. Estudios de naturaleza similar no han podido ser realizados en hipergrafos dirigidos porque no existe algoritmos capaces de calcular los componentes fuertemente conexos de este tipo de hipergrafos. En esta tesis doctoral, hemos investigado como calcular los componentes fuertemente conexos de un hipergrafo dirigido. En concreto, hemos desarrollado dos algoritmos para este problema y hemos determinado que son correctos y cuál es su complejidad computacional. Ambos algoritmos han sido evaluados empíricamente para comparar sus tiempos de ejecución. Para la evaluación, hemos producido una selección de hipergrafos dirigidos generados de forma aleatoria inspirados en modelos muy conocidos de grafos aleatorios como Erdos-Renyi, Newman-Watts-Strogatz and Barabasi-Albert. Varias optimizaciones para ambos algoritmos han sido implementadas y analizadas en la tesis. En concreto, colapsar los componentes fuertemente conexos del grafo dirigido que se puede construir eliminando ciertas hiperaristas complejas del hipergrafo dirigido original, mejora notablemente los tiempos de ejecucion de los algoritmos para varios de los hipergrafos utilizados en la evaluación. Aparte de los ejemplos de aplicación mencionados anteriormente, los hipergrafos dirigidos han sido también empleados en el área de representación de conocimiento. En concreto, este tipo de hipergrafos se han usado para el cálculo de módulos de ontologías. Una ontología puede ser definida como un conjunto de axiomas que especifican formalmente un conjunto de símbolos y sus relaciones, mientras que un modulo puede ser entendido como un subconjunto de axiomas de la ontología que recoge todo el conocimiento que almacena la ontología sobre un conjunto especifico de símbolos y sus relaciones. En la tesis nos hemos centrado solamente en módulos que han sido calculados usando la técnica de localidad sintáctica. Debido a que las ontologías pueden ser muy grandes, el cálculo de módulos puede facilitar las tareas de re-utilización y mantenimiento de dichas ontologías. Sin embargo, analizar todos los posibles módulos de una ontología es, en general, muy costoso porque el numero de módulos crece de forma exponencial con respecto al número de símbolos y de axiomas de la ontología. Afortunadamente, los axiomas de una ontología pueden ser divididos en particiones conocidas como átomos. Cada átomo representa un conjunto máximo de axiomas que siempre aparecen juntos en un modulo. La decomposición atómica de una ontología es definida como un grafo dirigido de tal forma que cada nodo del grafo corresponde con un átomo y cada arista define una dependencia entre una pareja de átomos. En esta tesis introducimos el concepto de“axiom dependency hypergraph” que generaliza el concepto de descomposición atómica de una ontología. Un modulo en una ontología correspondería con un componente conexo en este tipo de hipergrafos y un átomo de una ontología con un componente fuertemente conexo. Hemos adaptado la implementación de nuestros algoritmos para que funcionen también con axiom dependency hypergraphs y poder de esa forma calcular los átomos de una ontología. Para demostrar la viabilidad de esta idea, hemos incorporado nuestros algoritmos en una aplicación que hemos desarrollado para la extracción de módulos y la descomposición atómica de ontologías. A la aplicación la hemos llamado HyS y hemos estudiado sus tiempos de ejecución usando una selección de ontologías muy conocidas del área biomédica, la mayoría disponibles en el portal de Internet NCBO. Los resultados de la evaluación muestran que los tiempos de ejecución de HyS son mucho mejores que las aplicaciones más rápidas conocidas. ABSTRACT Directed hypergraphs are an intuitive modelling formalism that have been used in problems related to propositional logic, relational databases, computational linguistic and machine learning. Directed hypergraphs are also presented as an alternative to directed (bipartite) graphs to facilitate the study of the interactions between components of complex systems that cannot naturally be modelled as binary relations. In this context, they are known as hyper-networks. A directed hypergraph is a generalization of a directed graph suitable for representing many-to-many relationships. While an edge in a directed graph defines a relation between two nodes of the graph, a hyperedge in a directed hypergraph defines a relation between two sets of nodes. Strong-connectivity is an equivalence relation that induces a partition of the set of nodes of a directed hypergraph into strongly-connected components. These components can be collapsed into single nodes. As result, the size of the original hypergraph can significantly be reduced if the strongly-connected components have many nodes. This approach might contribute to better understand how the nodes of a hypergraph are connected, in particular when the hypergraphs are large. In the case of directed graphs, there are efficient algorithms that can be used to compute the strongly-connected components of large graphs. For instance, it has been shown that the macroscopic structure of the World Wide Web can be represented as a “bow-tie” diagram where more than 70% of the nodes are distributed into three large sets and one of these sets is a large strongly-connected component. This particular structure has been also observed in complex networks in other fields such as, e.g., biology. Similar studies cannot be conducted in a directed hypergraph because there does not exist any algorithm for computing the strongly-connected components of the hypergraph. In this thesis, we investigate ways to compute the strongly-connected components of directed hypergraphs. We present two new algorithms and we show their correctness and computational complexity. One of these algorithms is inspired by Tarjan’s algorithm for directed graphs. The second algorithm follows a simple approach to compute the stronglyconnected components. This approach is based on the fact that two nodes of a graph that are strongly-connected can also reach the same nodes. In other words, the connected component of each node is the same. Both algorithms are empirically evaluated to compare their performances. To this end, we have produced a selection of random directed hypergraphs inspired by existent and well-known random graphs models like Erd˝os-Renyi and Newman-Watts-Strogatz. Besides the application examples that we mentioned earlier, directed hypergraphs have also been employed in the field of knowledge representation. In particular, they have been used to compute the modules of an ontology. An ontology is defined as a collection of axioms that provides a formal specification of a set of terms and their relationships; and a module is a subset of an ontology that completely captures the meaning of certain terms as defined in the ontology. In particular, we focus on the modules computed using the notion of syntactic locality. As ontologies can be very large, the computation of modules facilitates the reuse and maintenance of these ontologies. Analysing all modules of an ontology, however, is in general not feasible as the number of modules grows exponentially in the number of terms and axioms of the ontology. Nevertheless, the modules can succinctly be represented using the Atomic Decomposition of an ontology. Using this representation, an ontology can be partitioned into atoms, which are maximal sets of axioms that co-occur in every module. The Atomic Decomposition is then defined as a directed graph such that each node correspond to an atom and each edge represents a dependency relation between two atoms. In this thesis, we introduce the notion of an axiom dependency hypergraph which is a generalization of the atomic decomposition of an ontology. A module in the ontology corresponds to a connected component in the hypergraph, and the atoms of the ontology to the strongly-connected components. We apply our algorithms for directed hypergraphs to axiom dependency hypergraphs and in this manner, we compute the atoms of an ontology. To demonstrate the viability of this approach, we have implemented the algorithms in the application HyS which computes the modules of ontologies and calculate their atomic decomposition. In the thesis, we provide an experimental evaluation of HyS with a selection of large and prominent biomedical ontologies, most of which are available in the NCBO Bioportal. HyS outperforms state-of-the-art implementations in the tasks of extracting modules and computing the atomic decomposition of these ontologies.