988 resultados para Hydrogen absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone due to having low half-life and devoid of environmental harmful effects is recognized as one of the most effective disinfectant and fungicide in aquaculture. The objective of this study is to consider the effects of periodicay ozonation, hydrogen peroxide treatment, and physical treatment capability in hatching rate enhancement. Three concentrations of 0.05, 0.1 and 0.15 ppm ozone (10 min) and peroxide hydrogen with dose of 500 and 1000 ppm in two procedures accompanied with physical treatment and without physical treatment were examined on hatching rate. In the first year, Egg ozonation (0.1 ppm) with physical treatment have been resulted the greatest hatching rate (81.4%). In the second year, egg treatment with 1000 ppm hydrogen peroxide with physical treatment have been showed the greatest hatching rate (78%). Average hatching rate for the blank control treatment (without disinfectin and physical treatment) was 32.7%. From the economic viewpoint, 0.05 ppm ozone with physical treatment, due to considerable minimizing at consumption energy and ozonation system retention costs, indicated as the best treatment than other ozone treatments for fungal control. Very low correlation (r=-0.14) have been observed between hatchery water temperature and fungal infection percentage in control treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the earliest theoretical speculation, stimulated by the growth of semiconductor superlattices, focused on novel devices based on vertical transport through engineered band structures; Esaki and Tsu promised Bloch oscillators in narrow mini-band systems and Kazarinov and Suris contemplated electrically stimulated intersubband transitions as sources of infrared radiation. Nearly twenty years later these material systems have been perfected, characterized and understood and experiments are emerging that test some of these original concepts for novel submillimetre wave electronics. Here we describe recent experiments on intersubband emission in quantum wells stimulated by resonant tunnelling currents. A critical issue at this time is devising a way to achieve population inversion. Other experiments explore 'saturation' effects in narrow miniband transport. Thermal saturation may be viewed as a precursor to Bloch oscillation if the same effects can be induced with an applied electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrolysis is the most mature form of hydrogen production. Unfortunately, water electrolysis has not yet achieved the efficiency and the cost levels required for any practical application. In order to enhance the current density, modification of the electrolyte and the electrode morphology are the most popular approaches. Recently there have been numerous reports on how to improve the efficiency of hydrogen production by water splitting [1-3]. On the electrode side, the use of non-platinum high efficiency electrode materials for water splitting will provide a promising future for the hydrogen economy. An ideal electrode for water electrolysis should have good permeability to water and gas. It should also offer good electrical properties with a long life. A porous graphite plate, when coated with titania, for example, is known to provide a simple and economical electrode for water electrolysis [4]. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the successful low-temperature growth of zinc oxide nanowires (ZnONWs) on silicon-on-insulator (SOI) CMOS micro-hotplates and their response, at different operating temperatures, to hydrogen in air. The SOI micro-hotplates were fabricated in a commercial CMOS foundry followed by a deep reactive ion etch (DRIE) in a MEMS foundry to form ultra-low power membranes. The micro-hotplates comprise p+ silicon micro-heaters and interdigitated metal electrodes (measuring the change in resistance of the gas sensitive nanomaterial). The ZnONWs were grown as a post-CMOS process onto the hotplates using a CMOS friendly hydrothermal method. The ZnONWs showed a good response to 500 to 5000 ppm of hydrogen in air. We believe that the integration of ZnONWs with a MEMS platform results in a low power, low cost, hydrogen sensor that would be suitable for handheld battery-operated gas sensors. © 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal foams fabricated via sintering offer novel mechanical and acoustic properties. Previously, polymer foams have been used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost-effective means for the mass-production of open-cell metal foams. The static flow resistance of sintered metal foams was characterized for a range of practical pore sizes and porosities. The measured values for the flow resistance were subsequently used in a phenomenological acoustic model to predict the impedances and propagation constants of the foams. The predictions were then compared to acoustic measurements. At low frequencies (0-1000Hz), the phenomenological model captures the magnitude and frequency dependence of the absorption. At higher frequencies, as expected, the phenomenological model underpredicted the acoustic properties of the foams. However, an alternative microstructural model demonstrated good correlation to the measured results in this frequency range. The effects of foam type and arrangement on the absorption pattern were examined. General trends were identified for enhancing the low frequency performance of an acoustic absorber incorporating sintered foams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.