978 resultados para Hybrid finite element method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an analytical model and its new numerical solution using the homogenization method are developed to determine the effective electromagnetic characteristics of honeycombs. Based on the proposed solution method, the electromagnetic properties are obtained by employing the multi-scale homogenization theory and periodical electric (magnetic) potential boundary conditions. Further, the effect of geometry of honeycomb's unit cell on effective electromagnetic properties is investigated with the use of the proposed method. The numerical results are compared with analytic results using the Smith-Scarpa's semi-empirical formula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical modelling of deep drawing process is of value in preliminary process design to illustrate the influence of major variables including friction and strain hardening on punch loads, cup dimensions and process limits. In this study, analytical models including theoretical solution and a series of finite element models are developed to account for the influences of process parameters including friction coefficient, tooling geometry and material properties on deep drawing of metal cups. The accuracy of both the theoretical and finite element solutions is satisfactory compared with those from experimental work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral element method is very efficient in modelling high-frequency stress wave propagation because it works in the frequency domain. It does not need to use very fine meshes in order to capture high frequency wave energy as the time domain methods do, such as finite element method. However, the conventional spectral element method requires a throw-off element to be added to the structural boundaries to act as a conduit for energy to transmit out of the system. This makes the method difficult to model wave reflection at boundaries. To overcome this limitation, imaginary spectral elements are proposed in this study, which are combined with the real structural elements to model wave reflections at structural boundaries. The efficiency and accuracy of this proposed approach is verified by comparing the numerical simulation results with measured results of one dimensional stress wave propagation in a steel bar. The method is also applied to model wave propagation in a steel bar with not only boundary reflection, but also reflections from single and multiple cracks. The reflection and transmission coefficients, which are obtained from the discrete spring model, are adopted to quantify the discontinuities. Experimental tests of wave propagation in a steel bar with one crack of different depths are also carried out. Numerical simulations and experimental results show that the proposed method is effective and reliable in modelling wave propagation in one-dimensional waveguides with reflections from boundary and structural discontinuities. The proposed method can be applied to effectively model stress wave propagation for structural damage detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potential severe plastic deformation process known as axi-symmetrical forward spiral extrusion (AFSE) has been studied numerically and experimentally. The process is based on the extrusion of cylindrical samples through a die with engraved spiral grooves in a near zero shape change manner. The process was simulated using a three dimensional finite element (FE) model that has been developed using commercial software, ABAQUS. In order to verify the finite element results, hot rolled and annealed samples of the alloy were experimentally processed by AFSE. The required extrusion forces during the process were estimated using the FE model and compared with the experimental values. The reasonable agreement between the FE results and experimental data verified the accuracy of the FE model. The numerical results indicate the linear strain distribution in the AFSE sample is only valid for a core concentric while the strain distribution in the vicinity of the grooves is non axi-symmetric. The FE simulation results from this research allows a better understanding of AFSE kinematics especially near the grooves, the required extrusion force and the resultant induced strain distribution in the sample. To compare the mechanical properties of the Mg-1.75Mn alloy before and after the process, a micro shear punch test was used. The tests were performed on samples undergoing one and four passes of AFSE. After four passes of AFSE, it was observed that the average shear strength of the alloy has improved by about 21%. The developedfinite element model enables tool design and material flow simulation during the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified axisymmetric forward spiral extrusion (AFSE) has been proposed recently to enhance the strain accumulation during the process. The new technique is called variable lead axisymmetric forward spiral extrusion (VLAFSE) that features a variable lead along the extrusion direction. To assess the effect of design modification on plastic deformation, a comprehensive study has been performed here using a 3D transient finite element (FE) model. The FE results established the shear deformation as the dominant mode of deformation which has been confirmed experimentally. The variable lead die extends strain accumulation in the radial and longitudinal directions over the entire grooved section of the die and eliminates the rigid body rotation which occurs in the case of a constant lead die, AFSE. A comparison of forming loads for VLAFSE and AFSE proved the advantages of the former design in the reduction of the forming load which is more pronounced under higher frictional coefficients. This finding proves that the efficiency of VLAFSE is higher than that of AFSE. Besides, the significant amount of accumulated shear strain in VLAFSE along with non-axisymmetric distribution of friction creates a surface feature in the processed sample called zipper effect that has been investigated. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine a recent proposal for data-privatization by testing it against well-known attacks, we show that all of these attacks successfully retrieve a relatively large (and unacceptable) portion of the original data. We then indicate how the data-privatization method examined can be modified to assist it to withstand these attacks and compare the performance of the two approaches. We also show that the new method has better privacy and lower information loss than the former method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite Element (FE) model updating has been attracting research attentions in structural engineering fields for over 20 years. Its immense importance to the design, construction and maintenance of civil and mechanical structures has been highly recognised. However, many sources of uncertainties may affect the updating results. These uncertainties may be caused by FE modelling errors, measurement noises, signal processing techniques, and so on. Therefore, research efforts on model updating have been focusing on tackling with uncertainties for a long time. Recently, a new type of evolutionary algorithms has been developed to address uncertainty problems, known as Estimation of Distribution Algorithms (EDAs). EDAs are evolutionary algorithms based on estimation and sampling from probabilistic models and able to overcome some of the drawbacks exhibited by traditional genetic algorithms (GAs). In this paper, a numerical steel simple beam is constructed in commercial software ANSYS. The various damage scenarios are simulated and EDAs are employed to identify damages via FE model updating process. The results show that the performances of EDAs for model updating are efficient and reliable.