934 resultados para Host-specificity
Resumo:
We have investigated methane (CH4) dissociative chemisorption on the Ni{100} surface by first-principles molecular dynamics (MD) simulations. Our results show that this reaction is mode-specific, with the n1 state being the most strongly coupled to efficient energy flow into the reaction coordinate when the molecule reaches the transition state. By performing MD simulations for two different transition state (TS) structures we provide evidence of TS structure-specific energy redistribution in methane chemisorption. Our results are compared with recently reported state-resolved measurement of methane adsorption probability on nickel surfaces, and we find that a strong correlation exists between the highest vibrational efficacy measured on Ni{100} for the n1 state and the calculated highest fractional vibrational energy content in this mode.
Resumo:
Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P ≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P ≤0.05). In addition, lactoferrin (P ≤0.002), transferrin receptor (P ≤0.05) and solute carrier family 11A1 (P ≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria.
Resumo:
The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free-choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual-choice Y-tube olfactometry experiments, D. rapae females discriminated between B. brassicae-infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.
Resumo:
Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions.
Resumo:
Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of anti-tumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to non-specific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an anti-tumour mAb (the anti-hCD 20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods and yield, molecular substitution ratio, retention of TLR7 activity and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150 : rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method, and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional crosslinker was firstly reacted with rituximab, and secondly to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells whilst no non-specific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.
Resumo:
Most terrestrial plants form mutually beneficial symbioses with specific soil-borne fungi known as mycorrhiza. In a typical mycorrhizal association, fungal hyphae colonize plant roots, explore the soil beyond the rhizosphere and provide host plants with nutrients that might be chemically or physically inaccessible to root systems. Here, we combined nutritional, radioisotopic (33P) and genetic approaches to describe a plant growth promoting symbiosis between the basidiomycete fungus Austroboletus occidentalis and jarrah (Eucalyptus marginata), which has quite different characteristics. We show that the fungal partner does not colonize plant roots; hyphae are localized to the rhizosphere soil and vicinity and consequently do not transfer nutrients located beyond the rhizosphere. Transcript profiling of two high-affinity phosphate (Pi) transporter genes (EmPHT1;1 and EmPHT1;2) and hyphal-mediated 33Pi uptake suggest that the Pi uptake shifts from an epidermal to a hyphal pathway in ectomycorrhizal plants (Scleroderma sp.), similar to arbuscular mycorrhizal symbioses, whereas A. occidentalis benefits its host indirectly. The enhanced rhizosphere carboxylates are linked to growth and nutritional benefits in the novel symbiosis. This work is a starting point for detailed mechanistic studies on other basidiomycete–woody plant relationships, where a continuum between heterotrophic rhizosphere fungi and plant beneficial symbioses is likely to exist.
Resumo:
We develop a transaction cost economics theory of the family firm, building upon the concepts of family-based asset specificity, bounded rationality, and bounded reliability. We argue that the prosperity and survival of family firms depend on the absence of a dysfunctional bifurcation bias. The bifurcation bias is an expression of bounded reliability, reflected in the de facto asymmetric treatment of family vs. nonfamily assets (especially human assets). We propose that absence of bifurcation bias is critical to fostering reliability in family business functioning. Our study ends the unproductive divide between the agency and stewardship perspectives of the family firm, which offer conflicting accounts of this firm type's functioning. We show that the predictions of the agency and stewardship perspectives can be usefully reconciled when focusing on how family firms address the bifurcation bias or fail to do so.
Resumo:
We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n=16; <48 y) and elderly (n=33; >65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.
Resumo:
Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir’s natural distribution encompasses three of the five soils, whereas lodgepole pine’s extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes.
Resumo:
BACKGROUND:The Salmonella enterica serovar Derby is frequently isolated from pigs and turkeys whereas serovar Mbandaka is frequently isolated from cattle, chickens and animal feed in the UK. Through comparative genomics, phenomics and mutant construction we previously suggested possible mechanistic reasons why these serovars demonstrate apparently distinct host ranges. Here, we investigate the genetic and phenotypic diversity of these two serovars in the UK. We produce a phylogenetic reconstruction and perform several biochemical assays on isolates of S. Derby and S. Mbandaka acquired from sites across the UK between the years 2000 and 2010. RESULTS:We show that UK isolates of S. Mbandaka comprise of one clonal lineage which is adapted to proficient utilisation of metabolites found in soya beans under ambient conditions. We also show that this clonal lineage forms a biofilm at 25 °C, suggesting that this serovar maybe well adapted to survival ex vivo, growing in animal feed. Conversely, we show that S. Derby is made of two distinct lineages, L1 and L2. These lineages differ genotypically and phenotypically, being divided by the presence and absence of SPI-23 and the ability to more proficiently invade porcine jejunum derived cell line IPEC-J2. CONCLUSION:The results of this study lend support to the hypothesis that the differences in host ranges of S. Derby and S. Mbandaka are adaptations to pathogenesis, environmental persistence, as well as utilisation of metabolites abundant in their respective host environments.
Resumo:
There are over 500 candidate secreted effector proteins (CSEPs) or Blumeria effector candidates (BECs) specific to the barley powdery mildew pathogen Blumeria graminis f.sp. hordei. The CSEP/BEC proteins are expressed and predicted to be secreted by biotrophic feeding structures called haustoria. Eight BECs are required for the formation of functional haustoria. These include the RNase-like effector BEC1054 (synonym CSEP0064). In order to identify host proteins targeted by BEC1054, recombinant BEC1054 was expressed in E. coli, solubilized, and used in pull-down assays from barley protein extracts. Many putative interactors were identified by LC-MS/MS after subtraction of unspecific binders in negative controls. Therefore, a directed yeast-2-hybrid assay, developed to measure the effectiveness of the interactions in yeast, was used to validate putative interactors. We conclude that BEC1054 may target several host proteins, including a glutathione-S-transferase, a malate dehydrogenase, and a pathogen-related-5 protein isoform, indicating a possible role for BEC1054 in compromising well-known key players of defense and response to pathogens. In addition, BEC1054 interacts with an elongation factor 1 gamma. This study already suggests that BEC1054 plays a central role in barley powdery mildew virulence by acting at several levels.
Resumo:
Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.
Resumo:
The influence of thyroid hormone on estrogen actions has been demonstrated both in vivo and in vitro. In transient transfection assays, the effects of liganded thyroid hormone receptors (TR) on transcriptional facilitation by estrogens bound to estrogen receptors (ER) display specificity according to the following: 1) ER isoform, 2) TR isoform, 3) the promoter through which transcriptional facilitation occurs, and 4) cell type. Some of these molecular phenomena may be related to thyroid hormone signaling of seasonal limitations upon reproduction. The various combinations of these molecular interactions provide multiple and flexible opportunities for relations between two major hormonal systems important for neuroendocrine feedbacks and reproductive behaviors.