907 resultados para Homoerotic love
Resumo:
禾本科Poaceae小麦族Triticeae Dumort.的多年生物种是该族的重要组成部分,约占该族植物总数的三分之二以上,广泛地分布于全世界各地,主要集中于北半球温带地区。由于小麦族多年生植物的种类繁多,生态环境多样、种间和种内的形态变异极大,而大多数多年生物种又具有多倍体起源,加之属间及种间的天然杂交也十分频繁,以致于造成了其系统学研究的巨大困难。通过近三十年来对小麦族植物的大量属间和种间杂交以及对其杂种的减数分裂染色体配对行为分析,对该族各个属的染色体组构成及其在进化上的关系和意义已经有了较为深入的认识。小麦族中的多倍体属是由来源不同的二倍体祖先属经过天然杂交和染色体自然加倍而形成,因而研究和分析各个二倍体属之间及与多倍体属间的染色体组亲缘关系,为揭示小麦族各属、种之间的系统与进化关系提供了非常有价值的资料。本研究通过对一些小麦族多年生植物的形态学、地理分布、属间和种间杂交以及染色体组之间的亲缘关系的一系列研究,对不同属以及同一属内不同组的物种之间的进化关系进行了深入的分析,并对其系统学进行了讨论。同时对于一些异常的细胞遗传学现象,如染色体在属间杂种的缺失、重复以及染色体配对的遗传控制也作了初步的分析。通过上述研究,本研究对于小麦族多年生的一些属、特别是披碱草属Elymus厶、拟鹅观草属Pseudorocgneria Love和大麦披碱草属Hordelymus (Jessen) Harz,的染色体组构成以及与各物种的形态学关系,物种之间的进化关系均有了更为深刻的认识。
Resumo:
Six new nortriterpenoids, schirubridilactones A-F (1-6). as well as 14 known compounds, were isolated from the leaves and stems of Schisandra rubriflora. The Structures of 1-6 were elucidated oil the basis of spectroscopic methods including HSQC, HMBC, H-1-H-1 COSY, and ROESY NMR experiments. The relative stereochemistry of I was confirmed through single-crystal X-ray analysis. In addition, compounds 1-6 showed anti-HIV-1 activity with EC50 values in the range 14.3-80.8 mu g/mL and Selectivity indices in the range 2.2-9.0.
Resumo:
Quality control is considered from the simulator's perspective through comparative simulation of an ultra energy-efficient building with EE4-DOE2.1E and EnergyPlus. The University of Calgary's Leadership in Energy and Environmental Design Platinum Child Development Centre, with a 66% certified energy cost reduction rating, was the case study building. A Natural Resources Canada incentive program required use of EE4 interface with DOE2.1E simulation engine for energy modelling. As DOE2.1E lacks specific features to simulate advanced systems such as radiant cooling in the CDC, an EnergyPlus model was developed to further evaluate these features. The EE4-DOE2.1E model was used for quality control during development of the base EnergyPlus model and simulation results were compared. Advanced energy systems then added to the EnergyPlus model generated small difference in estimated total annual energy use. The comparative simulation process helped identify the main input errors in the draft EnergyPlus model. The comparative use of less complex simulation programs is recommended for quality control when producing more complex models. © 2009 International Building Performance Simulation Association (IBPSA).
Resumo:
Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications. © 2009 Optical Society of America.
Resumo:
We report on the principle of operation, construction and testing of a liquid crystal lens which is controlled by distributing voltages across the control electrodes, which are in turn controlled by adjusting the phase of the applied voltages. As well as (positive and negative) defocus, then lenses can be used to control tip/tilt, astigmatism, and to create variable axicons. © 2007 Optical Society of America.
Resumo:
Planar integrated free-space optical systems are well suited for a variety of applications, such as optical interconnects and security devices. Here, we demonstrate dynamic functionality of such microoptical systems by the integration of adaptive liquid-crystal-devices. © 2007 Optical Society of America.
Resumo:
We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation. © 2006 Optical Society of America.
Resumo:
Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications.
Resumo:
In stereo displays, binocular disparity creates a striking impression of depth. However, such displays present focus cues - blur and accommodation - that specify a different depth than disparity, thereby causing a conflict. This conflict causes several problems including misperception of the 3D layout, difficulty fusing binocular images, and visual fatigue. To address these problems, we developed a display that preserves the advantages of conventional stereo displays, while presenting correct or nearly correct focus cues. In our new stereo display each eye views a display through a lens that switches between four focal distances at very high rate. The switches are synchronized to the display, so focal distance and the distance being simulated on the display are consistent or nearly consistent with one another. Focus cues for points in-between the four focal planes are simulated by using a depth-weighted blending technique. We will describe the design of the new display, discuss the retinal images it forms under various conditions, and describe an experiment that illustrates the effectiveness of the display in maximizing visual performance while minimizing visual fatigue. © 2009 SPIE-IS&T.
Resumo:
Liquid crystal (LC) adaptive optical elements are described, which provide an alternative to existing micropositioning technologies in optical tweezing. A full description of this work is given in [1]. An adaptive LC prism supplies tip/tilt to the phase profile of the trapping beam, giving rise to an available steering radius within the x-y plane of 10 μm. Additionally, a modally addressed adaptive LC lens provides defocus, offering a z-focal range for the trapping site of 100 μm. The result is full three-dimensional positional control of trapped particle(s) using a simple and wholly electronic control system. Compared to competing technologies, these devices provide a lower degree of controllability, but have the advantage of simplicity, cost and light efficiency. Furthermore, due to their birefringence, LC elements offer the opportunity of the creation of dual optical traps with controllable depth and separation.
Resumo:
We report on our work on producing liquid crystal switchable modal lenses and their use in a compound lens system in order to produce variable focus/zoom lenses. We describe work on producing a high power lens, and present theoretical work on off-axis phase modulation in a liquid crystal lens which is important in order to be able to carry out a complete optical design of a liquid crystal lens.
Resumo:
We present and demonstrate a technique for producing a high-speed variable focus lens using a fixed birefringent lens and a ferroelectric liquid crystal cell as a polarization switch. A calcite lenses with ordinary and extraordinary focal lengths of 109mm and 88mm respectively, was used to demonstrate focus switching at frequencies of up to 3kHz. Two identical lenses and a single liquid crystal were also used to demonstrate zoom.
Resumo:
We report on work on producing phase-only polymer-dispersed liquid crystals for use in spatial light modulators for adaptive optics. The aim is to assess the magnitude of the achievable phase shifts and the associated slew rate. We describe our methodology of producing devices and present our initial results.