922 resultados para High-frequency data


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glassy Turonian foraminifera preserved in clay-rich sediments from the western tropical Atlantic yield the warmest equivalent d18O sea-surface temperatures (SSTs) yet reported for the entire Cretaceous-Cenozoic. We estimate Turonian SSTs that were at least as warm as (conservative mean ~30 °C) to significantly warmer (warm mean ~33 °C) than those in the region today. However, if independent evidence for high middle Cretaceous pCO2 is reliable and resulted in greater isotopic fractionation between seawater and calcite because of lower sea-surface pH, our conservative and warm SST estimates would be even higher (32 and 36°C, respectively). Our new tropical SSTs help reconcile geologic data with the predictions of general circulation models that incorporate high Cretaceous pCO2 and lend support to the hypothesis of a Cretaceous greenhouse. Our data also strengthen the case for a Turonian age for the Cretaceous thermal maximum and highlight a 20-40 m.y. mismatch between peak Cretaceous-Cenozoic global warmth and peak inferred tectonic CO2 production. We infer that this mismatch is either an artifact of a hidden Turonian pulse in global ocean-crust cycling or real evidence of the influence of some other factor on atmospheric CO2 and/or SSTs. A hidden pulse in crust cycling would explain the timing of peak Cretaceous-Cenozoic sea level (also Turonian), but other factors are needed to explain high-frequency (~10-100 k.y.) instability in middle Cretaceous SSTs reported elsewhere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sedimentary cycles are observed in the nearly complete Lower Cretaceous to Eocene pelagic carbonates at Site 762 on the Exmouth Plateau off northwest Australia. The high-frequency cycles of variable clay and foraminifers in nannofossil chalk appear as color cycles repeating on a scale of centimeters to meters in thickness. Measured cycle thickness indicate that the dominant cycles appear to be related to the precession and obliquity periods. To evaluate the high-frequency variance observed on the gamma-ray curve, spectral analysis of the log was performed on two intervals: 260 to 365 mbsf in the Cenozoic, and 555 to 685 mbsf in the Mesozoic. Average Cenozoic sedimentation rates of 10.5 m/m.y. are high enough to show that variance is present in the full suite of eccentricity bands (413-123-95 k.y.). Spectral analysis of the Mesozoic section failed to produce dominant peaks that could be correlated to predicted orbital periods. The bioturbation observed in the cores in this interval may be responsible for diluting the signal and producing high-frequency noise, which is manifested in the spectra as low, broad amplitude peaks. Orbital forcing may be affecting sedimentation on the Exmouth Plateau by influencing cycles of increased carbonate production or dissolution. Alternatively, clay abundance cycles may be related to eolian deposition during cycles of increased aridity in western Australia. Four low-frequency events were also identified at Site 762 from the core and log data. The duration of these events is approximately 13 m.y., and the conformable boundaries of these sedimentary cycles correlate with observed nondepositional surfaces in other wells in western Australia. The causal mechanism for the onset of these events may be eustatic, but alternatively may be regional tectonism with associated circulation pattern changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-resolution sedimentary sequence recovered from the Tagus prodelta has been studied with the objective to reconstruct multi-decadal to centennial-scale climate variability on the western Iberian Margin and to discuss the observations in a wider oceanographic and climatic context. Between ca. 100 BC and AD 400 the foraminiferal fauna and high abundance of Globorotalia inflata indicate advection of subtropical waters via the Azores Current and the winter-time warm Portugal Coastal Current. Between ca. AD 400 and 1350, encompassing the Medieval Climate Anomaly (MCA), enhanced upwelling is indicated by the planktonic foraminiferal fauna, in particular by the high abundance of upwelling indicator species Globigerina bulloides. Relatively light d18O values and high sea surface temperature (SST) (reconstructed from foraminiferal assemblages) point to upwelling of subtropical Eastern North Atlantic Central Water. Between ca. AD 1350 and 1750, i.e. most of the Little Ice Age, relatively heavy d18O values and low reconstructed SST, as well as high abundances of Neogloboquadrina incompta, indicate the advection of cold subpolar waters to the area and a southward deflection of the subpolar front in the North Atlantic, as well as changes in the mode of the North Atlantic Oscillation. In addition, the assemblage composition together with the other proxy data reveals less upwelling and stronger river input than during the MCA. Stronger Azores Current influence on the Iberian Margin and strong anthropogenic effect on the climate after AD 1750 is indicated by the foraminiferal fauna. The foraminiferal assemblage shows a significant change in surface water conditions at ca. AD 1900, including enhanced river runoff, a rapid increase in temperature and increased influence of the Azores Current. The Tagus record displays a high degree of similarity to other North Atlantic records, indicating that the site is influenced by atmospheric-oceanic processes operating throughout the North Atlantic, as well as by local changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fluids in subduction zones can influence seismogenic behaviour and prism morphology. The Eastern Makran subduction zone, offshore Pakistan, has a very thick incoming sediment section of up to 7.5 km, providing a large potential fluid source to the accretionary prism. A hydrate-related bottom simulating reflector (BSR), zones of high amplitude reflectivity, seafloor seep sites and reflective thrust faults are present across the accretionary prism, indicating the presence of fluids and suggesting active fluid migration. High amplitude free gas zones and seep sites are primarily associated with anticlinal hinge traps, and fluids here appear to be sourced from shallow biogenic sources and migrate to the seafloor along minor normal faults. There are no observed seep sites associated with the surface expression of the wedge thrust faults, potentially due to burial of the surface trace by failure of the steep thrust ridge slopes. Thrust fault reflectivity is restricted to the upper 3 km of sediment and the deeper décollement is non-reflective. We interpret that fluids and overpressure are not common in the deeper stratigraphic section. Thermal modelling of sediments at the deformation front suggests that the deeper sediment section is relatively dewatered and not currently contributing to fluid expulsion in the Makran accretionary prism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results of detailed geomagnetic and geomorphological studies carried out by R/V Akvanavt together with data obtained by a side-scanning sonar and high-frequency profiles from a towed Zvuk-4 vehicle plus results of visual observations of deep-sea manned Pisces submersible have shown that the spreading axis is divided into segments, whose strike (330°) differs from the overall strike (310°) of the axial magnetic anomaly. In the study area segments are about 1 km long and transform displacements are 0.5 km. Calculations on a model have shown that spreading is asymmetric: during the Brunhes epoch accretion rate of the African Plate was 6 mm/yr and that of the Arabian Plate 7 mm/yr. Earlier it had been 9 and 11 mm/yr, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The long-term record of glacial/interglacial cycles indicates three major paleoceanographic regimes in the Norwegian Sea. The period since the first major glaciation over Scandinavia at 2.56 Ma is characterized by high-frequency, low-amplitude oscillations of ice-rafted debris inputs, a lowered salinity, and decreased carbonate shell production in surface waters as well as overall strong carbonate dissolution at the sea floor. These conditions indicate a more zonal circulation pattern in the Northern Hemisphere and a relative isolation of surface and bottom waters in the Norwegian Sea. The generally temperate glacial climate was only interrupted by episodic weak intrusions of warm Atlantic waters. These intrusions have been detected in considerable magnitude only at Site 644, and thus are restricted to areas much closer to the Norwegian shelf than during earlier periods. The interval from 1.2 to 0.6 Ma is characterized by an increase in carbonate shell production and a better preservation, as well as a change in frequency patterns of ice-rafted debris inputs. This pattern reflects increasing meridionality in circulation-strengthening contrasts in the Norwegian Sea between strong glaciations and warm interglacials. The past 0.6 Ma reveal high-amplitude oscillations in carbonate records that are dominated by the 100-k.y. frequency pattern. Glacial/interglacial sedimentary cycles in the ODP Leg 104 drill sites reveal a variety of specific dark lithofacies. These dark diamictons reflect intense iceberg rafting in surface waters fed by surges along the front of marine-based parts of the continental ice sheets in the southeastern sector of the Norwegian Sea and are associated with resuspension of reworked fossil organic carbon and strong dissolution at the sea floor. Piling up of huge iceberg barriers along the Iceland-Faeroe-Scotland Ridge might have partially blocked off surface water connections with the North Atlantic during these periods

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Site 722 provides high resolution records of percent CaCO3, magnetic susceptibility, d18O, organic carbon, and coarse fraction for the past 3.4 m.y. from the crest of the Owen Ridge, northwestern Arabian Sea. Within this time interval, most of the carbonate percent variations can be attributed to terrigenous dilution and do not reflect changes in the carbonate system. From the late Pliocene to Present, the average rate of calcium carbonate accumulation increases from 1 to 3 g/cm**2/k.y. and the average accumulation of organic carbon decreases from 75 to 30 mg/cm**2/k.y. The carbonate component is more dissolved in the older interval. The long-term variations in carbonate accumulation may reflect a greater input of organic matter in the late Pliocene, which decomposes to produce CO2 and dissolve carbonate. Magnetic susceptibility and % noncarbonate (100 - CaCO3%) reflect changes in the amount of the lithogenic component in the sediments. The period of variation of lithogenic material is the same period as the original forcing of the regional summer monsoon, however, the timing matches global aridity patterns and global ice volume (sea level) changes. This preliminary analysis suggests that the high frequency variation of lithogenic material persists for at least the last 3.4 m.y. Within the last million years, calcium carbonate accumulation has a large amplitude signal that covaries with major changes in ice volume. Both calcium carbonate and noncarbonate (mostly terrigenous) accumulation are greatest during glacial stages. Interglacial intervals are characterized by low mass accumulation rates, increased foraminifer fragmentation, and increased opal concentration. The accumulation of organic carbon matches the high frequency changes in sedimentation rates. We attribute this high correlation to enhanced preservation of organic carbon by increased sedimentation rate. Of the three major biological components studied, only opal exhibits the variations expected for a biological productivity system forced by monsoonal upwelling driven by changes in northern hemisphere summer radiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laboratory experiments show that undercooling to about -5°C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5°C and -5°C or -10°C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50°C. l4CO2 incorporation after freezing to -20°C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.