920 resultados para Heterogeneous nanostructures
Resumo:
A new catalyst derived from osmium has been prepared, fully characterized and tested in the dihydroxylation of alkenes. The catalyst was prepared by wet impregnation methodology of OsCl3·3H2O on a commercial micro-magnetite surface. The catalyst allowed the reaction with one of the lowest osmium loadings for a heterogeneous catalyst and was selective for the monodihydroxylation of 1,5-dienes. Moreover, the catalyst was easily removed from the reaction medium by the simple use of a magnet. The selectivity of catalyst is very high with conversions up to 99%. Preliminary kinetics studies showed a first-order reaction rate with respect to the catalyst.
Resumo:
High intensity ultrasound can be used for the production of novel nanomaterials, including metal oxides. According to previous works in this field, the most notable effects are consequence of acoustic cavitation. In this context, we have studied the preparation of different materials in the presence of ultrasound, including N-doped TiO2 nanopowder, NiTiO3 nanorods and MnOx thin films. Ultrasound did not show a significant effect in all the cases. Exclusively for NiTiO3 nanorods a reduction of the final particle size occurs upon ultrasonic irradiation. From these results, it can be concluded that the ultrasound irradiation does not always play a key role during the synthesis of metal oxides. The effects seem to be particularly relevant in those cases where mass transport is highly hindered and in those procedures that require the rupture of nanoparticle aggregates to obtain a homogenous dispersion.
Resumo:
Gold nanoparticles supported on a polyacrylamide containing a phosphinite ligand have been synthesized and characterized using different techniques such as TEM, SEM, EDX, XPS, and solid UV analyses. The new material was successfully applied as a heterogeneous catalyst for the three-component A3 coupling of amines, aldehydes, and alkynes to give propargylamines. Reactions are performed in neat water at 80 °C with only 0.05 mol% catalyst loading. The heterogeneous catalyst is recyclable during seven consecutive runs with small decrease in activity.
Resumo:
Against the background of the current discussion about the EU’s common agricultural policy (CAP) after 2013, the question of the impact of government support on land prices is crucially important. Validation of the CAP’s success also hinges on a proper assessment of a choice of policy instruments. This study therefore has the objective of investigating on a theoretical basis the effects of different government support measures on land rental prices and land allocation. The different measures under consideration are the price support, area payments and decoupled single farm payments (SFPs) of the CAP. Our approach evaluates the potential impact of each measure based on a Ricardian land rent model with heterogeneous land quality and multiple land uses. We start with a simple model of one output and two inputs, where a Cobb-Douglas production technology is assumed between the two factors of land and non-land inputs. In a second step, an outside option is introduced. This outside option, as opposed to land use of the Ricardian type, is independent of land quality. The results show that area payments and SFPs become fully capitalised into land rents, whereas in a price support scheme the capitalisation depends on per-acreage productivity. Moreover, in a price support scheme and a historical model, the capitalisation is positively influenced by land quality. Both area payments and price supports influence land allocation across different uses compared with no subsidies, where the shift tends to be larger in an area payment scheme than in a price support scheme. By contrast, SFPs do not influence land allocation.
Resumo:
Includes bibliographical references.
Resumo:
Prepared under Contract AT(04-3)-165 for the U.S. Atomic Energy Commission, San Francisco Operations Office.
Resumo:
Prepared under Contract AT(04-3)-165 for the U.S. Atomic Energy Commission, San Francisco Operations Office.
Resumo:
"Presented at the U.S.--Israeli Department-to-Ministry Seminar Program, Jerusalem, Israel, October 17-20, 1988."
Resumo:
Discoloration and mineralization of Reactive Red HE-3B were studied by using a laponite clay-based Fe nanocomposite (Fe-Lap-RD) as a heterogeneous catalyst in the presence of H2O2 and UV light. Our experimental results clearly indicate that Fe-Lap-RD mainly consists of Fe2O3 (meghemite) and Fe2Si4O10(OH)2 (iron silicate hydroxide) which have tetragonal and monoclinic structures, respectively, and has a high specific surface area (472m(2) / g) as well as a high total pore volume (0.547 cm(3)/g). It was observed that discoloration of HE-3B undergoes a much faster kinetics than mineralization of HE-3B. It was also found that initial HE-3B concentration, H2O2 concentration, UV light wavelength and power, and Fe-Lap-RD catalyst loading are the four main factors that can significantly influence the mineralization of HE-3B. At optimal conditions, complete discoloration of 100 mg/L HE-3B can be achieved in 30 min and the total organic carbon removal ratio can attain 76% in 120 min, illustrating that Fe-Lap-RD has a high photo-catalytic activity in the photo-assisted discoloration and mineralization of HE-3B in the presence of UV light (254nm) and H2O2. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (M-n = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.