996 resultados para Heavy particles (Nuclear physics)
Resumo:
The GEANT4 simulations are essential for the development of medical tomography with proton beams pCT. In the case of thin absorbers the latest releases of GEANT4 generate very similar final spectra which agree well with the results of other popular Monte Carlo codes like TRIM/SRIM, or MCNPX. For thick absorbers, however, the disagreements became evident. In a part, these disagreements are due to the known contradictions in the NIST PSTAR and SRIM reference data. Therefore, it is interesting to compare the GEANT4 results with each other, with experiment, and with diverse code results in a reduced form, which is free from this kind of doubts. In this work such comparison is done within the Reduced Calibration Curve concept elaborated for the proton beam tomography. © 2010 IEEE.
Resumo:
Within general characteristics of low-energy few-body systems, we revise some well-known correlations found in nuclear physics, and the properties of low-mass halo nuclei in a three-body neutron-neutron-core model. In this context, near the critical conditions for the occurrence of an Efimov state, we report some results obtained for the neutron- 19C elastic scattering. © 2010 American Institute of Physics.
Resumo:
Presently it is well known that neutrino oscillation data are well described by massive neutrinos and their mixing. This suggests changes in the standard model (SM) and makes the flavor physics even more interesting. Recently, it has been proposed a multi-Higgs extension of the SM with Abelian and non-Abelian discrete symmetries which seeks to explain the origin of the masses and mixing matrices in all charge sectors. © 2012 Elsevier B.V.
Resumo:
The fixed-slope correlation between tetramer and trimer binding energies, observed by Tjon in the context of nuclear physics, is mainly a manifestation of the dominance of the two-nucleon force in the nuclear potential, which makes the four-body scale on the order of the three-body one. In a more general four-boson case, the correlation between tetramer and trimer binding energies has a non-fixed slope, which expresses the dependence on the new scale. The associated scaling function generates a family of Tjon lines. This conclusion relies on a recent study with weakly-bound four identical bosons, within a renormalized zero-range Faddeev-Yakubovsky formalism. © 2012 Springer-Verlag.
Resumo:
We investigate the low-energy elastic D̄N interaction using a quark model that confines color and realizes dynamical chiral symmetry breaking. The model is defined by a microscopic Hamiltonian inspired in the QCD Hamiltonian in Coulomb gauge. Constituent quark masses are obtained by solving a gap equation, and baryon and meson bound-state wave functions are obtained using a variational method. We derive a low-energy meson-nucleon potential from a quark-interchange mechanism whose ingredients are the quark-quark and quark-antiquark interactions and baryon and meson wave functions, all derived from the same microscopic Hamiltonian. The model is supplemented with (σ, ρ, ω, a0) single-meson exchanges to describe the long-range part of the interaction. Cross sections and phase shifts are obtained by iterating the quark-interchange plus meson-exchange potentials in a Lippmann-Schwinger equation. Once coupling constants of long-range scalar σ and a0 meson exchanges are adjusted to describe experimental phase shifts of the K+N and K0N reactions, predictions for cross sections and s-wave phase shifts for the D̄0N and D-N reactions are obtained without introducing new parameters. © 2013 American Physical Society.
Resumo:
We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar S and vector V confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+C, where C is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not occur for potentials going to zero at large distances, which are used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for antifermions. © 2013 American Physical Society.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We discuss the relation between correlation functions of twist-two large spin operators and expectation values of Wilson loops along light-like trajectories. After presenting some heuristic field theoretical arguments suggesting this relation, we compute the divergent part of the correlator in the limit of large 't Hooft coupling and large spins, using a semi-classical world-sheet which asymptotically looks like a GKP rotating string. We show this diverges as expected from the expectation value of a null Wilson loop, namely, as (ln mu(-2))(2). mu being a cut-off of the theory. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper we analyse the vacuum polarization effects due to a magnetic flux on massless fermionic fields in a cosmic string background. Three distinct configurations of magnetic fields are considered. In all of them the magnetic fluxes are confined in a long cylindrical tube of finite radius.
Resumo:
Recently, in [7] we proposed a revisited S-matrix approach to efficiently find the bosonic terms of the open superstring low energy effective lagrangian (OSLEEL). This approach allows to compute the alpha'(N) terms of the OSLEEL using open superstring n-point amplitudes in which n is considerably lower than (N + 2) (which is the order of the required amplitude to obtain those alpha'(N) terms by means of the conventional S-matrix approach). In this work we use our revisited S-matrix approach to examine the structure of the scattering amplitudes, arriving at a closed form for them. This is a RNS derivation of the formula first found by Mafra, Schlotterer and Stieberger [21], using the pure spinor formalism. We have succeeded doing this for the 5, 6 and 7-point amplitudes. In order to achieve these results we have done a careful analysis of the kinematical structure of the amplitudes, finding as a by-product a purely kinematical derivation of the BCJ relations (for N = 4, 5, 6 and 7). Also, following the spirit of the revisited S-matrix approach, we have found the alpha' expansions for these amplitudes up to alpha'(6) order in some cases, by only using the well known open superstring 4-point amplitude, cyclic symmetry and tree level unitarity: we have not needed to compute any numerical series or any integral involving polylogarithms, at any moment. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Resumo:
In this work we compute the one-nucleon-induced nonmesonic hypernuclear decay rates of He-5(Lambda), C-12(Lambda) and C-13(Lambda) using a formalism based on the independent particle shell model in terms of laboratory coordinates. To ascertain the correctness and precision of the method, these results are compared with those obtained using a formalism in terms of center-of-mass coordinates, which has been previously reported in the literature. The formalism in terms of laboratory coordinates will be useful in the shell-model approach to two-nucleon-induced transitions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The impact of a (I=0, JP=1/2+)Z+(1540) resonance with a width of 5 MeV or more on the K+N(I=0) elastic cross section and on the P01 phase shift is examined within the KN meson-exchange model of the Jülich group. It is shown that the rather strong enhancement of the cross section caused by the presence of a Z + with the above properties is not compatible with the existing empirical information on KN scattering. Only a much narrower Z+ state could be reconciled with the existing data - or, alternatively, the Z + state must lie at an energy much closer to the KN threshold.