995 resultados para Harrison, Frederic,
Resumo:
Background: Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders. Methodology/Principal Findings: In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate. Conclusions/Significance: A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.
Resumo:
Considering the role of student voice in music education in connection with the role of music in identity formation. A report on a small-scale study.
Resumo:
We present stereoscopic images of an Earth-impacting Coronal Mass Ejection (CME). The CME was imaged by the Heliospheric Imagers onboard the twin STEREO spacecraft during December 2008. The apparent acceleration of the CME is used to provide independent estimates of its speed and direction from the two spacecraft. Three distinct signatures within the CME were all found to be closely Earth-directed. At the time that the CME was predicted to pass the ACE spacecraft, in-situ observations contained a typical CME signature. At Earth, ground-based magnetometer observations showed a small but widespread sudden response to the compression of the geomagnetic cavity at CME impact. In this case, STEREO could have given warning of CME impact at least 24 hours in advance. These stereoscopic observations represent a significant milestone for the STEREO mission and have significant potential for improving operational space weather forecasting.
Resumo:
Cross-contamination between cell lines is a longstanding and frequent cause of scientific misrepresentation. Estimates from national testing services indicate that up to 36% of cell lines are of a different origin or species to that claimed. To test a standard method of cell line authentication, 253 human cell lines from banks and research institutes worldwide were analyzed by short tandem repeat profiling. The short tandem repeat profile is a simple numerical code that is reproducible between laboratories, is inexpensive, and can provide an international reference standard for every cell line. If DNA profiling of cell lines is accepted and demanded internationally, scientific misrepresentation because of cross-contamination can be largely eliminated.
Resumo:
Daily sunshine duration is commonly reported at weather stations. Beyond the basic duration report, more information is available from scorched cards of Campbell-Stokes sunshine recorders, such as the estimation of direct-beam solar irradiance. Sunshine cards therefore potentially provide information on sky state, as inferred from solar-radiation data. Some sites have been operational since the late 19th century, hence sunshine cards potentially provide underexploited historical data on sky state. Sunshine cards provide an example of an archive source yielding data beyond the measurements originally sought.
Resumo:
Electrification of atmospheric dust influences the coagulation, wet removal and fall speeds of dust particles. Alignment of dust particles can also occur in fair weather atmospheric electrical conditions if the particles are charged. However, very few electrical measurements made in elevated dust layers exist. Balloon-borne charge and particle instrumentation have been used to investigate the electrical properties of elevated Saharan dust layers. Soundings from the Cape Verde Islands, which experience frequent Saharan dust outbreaks, intercepted several dust layers. Two balloon soundings during summer 2009 detected dust particles in layers up to 4 km altitude. Simultaneous electrical measurements showed charge inside the dust layers, with a maximum measured charge density of 25 pC m − 3, sufficient to influence wet removal processes.
Resumo:
Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun – Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements.
Resumo:
Understanding the onset of coronal mass ejections (CMEs) is surely one of the holy grails of solar physics today. Inspection of data from the Heliospheric Imagers (HI), which are part of the SECCHI instrument suite aboard the two NASA STEREO spacecraft, appears to have revealed pre-eruption signatures which may provide valuable evidence for identifying the CME onset mechanism. Specifically, an examination of the HI images has revealed narrow rays comprised of a series of outward-propagating plasma blobs apparently forming near the edge of the streamer belt prior to many CME eruptions. In this pilot study, we inspect a limited dataset to explore the significance of this phenomenon, which we have termed a pre-CME ‘fuse’. Although, the enhanced expulsion of blobs may be consistent with an increase in the release of outward-propagating blobs from the streamers themselves, it could also be interpreted as evidence for interchange reconnection in the period leading to a CME onset. Indeed, it is argued that the latter could even have implications for the end-of-life of CMEs. Thus, the presence of these pre-CME fuses provides evidence that the CME onset mechanism is either related to streamer reconnection processes or the reconnection between closed field lines in the streamer belt and adjacent, open field lines. We investigate the nature of these fuses, including their timing and location with respect to CME launch sites, as well as their speed and topology.
Resumo:
Systematic natural ventilation effects on measured temperatures within a standard large wooden thermometer screen are investigated under summer conditions, using well-calibrated platinum resistance thermometers. Under low ventilation (2mwind speed u2 < 1.1 m s−1), the screen slightly underestimates daytime air temperature but overestimates air temperature nocturnally by 0.2◦C. The screen’s lag time L lengthens with decreasing wind speed, following an inverse power law relationship between L and u2. For u2 > 2 m s−1, L ∼ 2.5 min, increasing, when calm, to at least 15 min. Spectral response properties of the screen to air temperature fluctuations vary with wind speed because of the lag changes. Ventilation effects are particularly apparent at the higher (>25◦C) temperatures, both through the lag effect and from solar heating. For sites where wind speed decreases with increasing daytime temperature, thermometer screen temperatures may consequently show larger uncertainties at the higher temperatures. Under strong direct beam solar radiation (>850W m−2) the radiation effect is likely to be <0.4◦C. Copyright c 2011 RoyalMeteorological Society
Resumo:
A coqueluche é uma doença respiratória, causada pela bactéria Bordetella pertussis. Atualmente, estima-se a ocorrência anual de 50 milhões de casos e mais de 300 mil mortes anuais em todo mundo. A transmissão ocorre, principalmente, pelo contato direto de uma pessoa doente com uma pessoa suscetível, através de gotículas de secreção da orofaringe eliminada por tosse ou espirro. O estudo realizado objetivou a caracterização da coqueluche como doença re-emergente, visando a análise epidemiológica da doença no Estado do Rio de Janeiro, valorizando também a percepção da Biossegurança pelos profissionais da área da saúde. Os resultados alcançados revelaram indicadores da ressurgência da doença no Brasil. As análises foram objeto de reflexões propostas em quatro artigos científicos, que explicitaram as metodologias utilizadas, os resultados encontrados e as discussões pertinentes à pesquisa. Os artigos intitulam-se: (1) An overview of reemerging Pertussis and evidence of ressurgence in Brazil, (2); A re-emergência da coqueluche; Da rotina dos atendimentos ao imperativo da Biossegurança (3); Fórum itinerante de ciência e saúde. Programa de capacitação para as doenças negligenciadas e re-emergentes e (4) Identification of linear B epitopes of pertactin of Bordetella pertussis induced by immunization with whole and acellular vaccine
Resumo:
Context: During development managers, analysts and designers often need to know whether enough requirements analysis work has been done and whether or not it is safe to proceed to the design stage. Objective: This paper describes a new, simple and practical method for assessing our confidence in a set of requirements. Method: We identified 4 confidence factors and used a goal oriented framework with a simple ordinal scale to develop a method for assessing confidence. We illustrate the method and show how it has been applied to a real systems development project. Results: We show how assessing confidence in the requirements could have revealed problems in this project earlier and so saved both time and money. Conclusion: Our meta-level assessment of requirements provides a practical and pragmatic method that can prove useful to managers, analysts and designers who need to know when sufficient requirements analysis has been performed.
Resumo:
Urban boundary layers (UBLs) can be highly complex due to the heterogeneous roughness and heating of the surface, particularly at night. Due to a general lack of observations, it is not clear whether canonical models of boundary layer mixing are appropriate in modelling air quality in urban areas. This paper reports Doppler lidar observations of turbulence profiles in the centre of London, UK, as part of the second REPARTEE campaign in autumn 2007. Lidar-measured standard deviation of vertical velocity averaged over 30 min intervals generally compared well with in situ sonic anemometer measurements at 190 m on the BT telecommunications Tower. During calm, nocturnal periods, the lidar underestimated turbulent mixing due mainly to limited sampling rate. Mixing height derived from the turbulence, and aerosol layer height from the backscatter profiles, showed similar diurnal cycles ranging from c. 300 to 800 m, increasing to c. 200 to 850 m under clear skies. The aerosol layer height was sometimes significantly different to the mixing height, particularly at night under clear skies. For convective and neutral cases, the scaled turbulence profiles resembled canonical results; this was less clear for the stable case. Lidar observations clearly showed enhanced mixing beneath stratocumulus clouds reaching down on occasion to approximately half daytime boundary layer depth. On one occasion the nocturnal turbulent structure was consistent with a nocturnal jet, suggesting a stable layer. Given the general agreement between observations and canonical turbulence profiles, mixing timescales were calculated for passive scalars released at street level to reach the BT Tower using existing models of turbulent mixing. It was estimated to take c. 10 min to diffuse up to 190 m, rising to between 20 and 50 min at night, depending on stability. Determination of mixing timescales is important when comparing to physico-chemical processes acting on pollutant species measured simultaneously at both the ground and at the BT Tower during the campaign. From the 3 week autumnal data-set there is evidence for occasional stable layers in central London, effectively decoupling surface emissions from air aloft.
Resumo:
Abstract. Not long after Franklin’s iconic studies, an atmospheric electric field was discovered in “fair weather” regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson’s model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.