983 resultados para Harrigan, Frank
Resumo:
Although it has long been known that genetic factors play a major role in shaping the electroencephalogram (EEG), progress on identifying the underlying genes has, until recently, been limited. Using quantitative trait loci (QTL) analyses several genomic loci affecting the sleep EEG could be mapped in the mouse. For three of these QTLs the responsible genes were identified leading to the implication of novel signaling pathways affecting EEG traits. Moreover, the insight that in the mouse the sleep-wake dependent dynamics in the expression of EEG slow waves during sleep is under strong genetic control has paved the way for candidate gene studies in humans investigating the contribution of specific polymorphism to the trait-like inter-individual differences in the susceptibility to sleep loss. Candidate gene studies in the mouse were also instrumental in establishing an alternative, noncircadian function for clock genes in the homeostatic regulation of sleep and modulating rhythmic EEG activity of thalamocortical origin. Future efforts should combine system genetics approaches in the mouse and genome-wide association studies in humans to facilitate uncovering the molecular pathways that shape brain activity.
Resumo:
Why we fight és un grup de set pel·lícules de format documental que van formar part d’un ampli programa d’informació, formació i propaganda impulsat per l’exèrcit nord-americà, en el moment en què els Estats Units ja s’havien implicat en la Segona Guerra Mundial. És també un dels més reeixits exercicis de retòrica cinematogràfica nord-americana d’aquell període que permet analitzar com els països democràtics van gestionar qüestions tan compromeses com la propaganda de guerra. La pretensió d’aquest treball de recerca és aprofundir en la complexitat ideològica i formal de la sèrie, que faci possible descobrir-ne els orígens, els objectius i la manera com aquests van ser assolits per un grup d’especialistes cinematogràfics, coordinats pel director Frank Capra, tots els quals havien triomfat fins llavors a Hollywood
Resumo:
Projecte final de carrera corresponent a l'àrea de J2EE. La temàtica del projecte es basa en el desenvolupament d'una eina empresarial per a la gestió d'alguns dels recursos d'una companyia aèria.
Resumo:
Background: Glutathione (GSH), a major cellular redox regulator and antioxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse as model system with 60% decreased brain GSH levels and, thus, strong vulnerability to oxidative stress, we have shown that GSH dysregulation results in abnormal mouse brain morphology (e.g., reduced parvalbumin, PV, immuno-reactivity in frontal areas) and function. Additional oxidative stress, induced by GBR12909 (a dopamine re-uptake inhibitor), enhances morphological changes even further. Aim: In the present study we use the GCLM KO mouse model system, asking now, whether GSH dysregulation also compromises mouse behaviour and cognition. Methods: Male and female wildtype (WT) and GCLM-KO mice are treated with GBR12909 or phosphate buffered saline (PBS) from postnatal day (P) 5 to 10, and are behaviourally tested at P 60 and older. Results: In comparison to WT, KO animals of both sexes are hyperactive in the open field, display more frequent open arm entries on the elevated plus maze, longer float latencies in the Porsolt swim test, and more frequent contacts of novel and familiar objects. Contrary to other reports of animal models with reduced PV immuno-reactivity, GCLM-KO mice display normal rule learning capacity and perform normally on a spatial recognition task. GCLM-KO mice do, however, show a strong deficit in object-recognition after a 15 minutes retention delay. GBR12909 treatment exerts no additional effect. Conclusions: The results suggest that animals with impaired regulation of brain oxidative stress are impulsive and have reduced behavioural control in novel, unpredictable contexts. Moreover, GSH dysregulation seems to induce a selective attentional or stimulus-encoding deficit: despite intensive object exploration, GCLM-KO mice cannot discriminate between novel and familiar objects. In conclusion, the present data indicate that GSH dysregulation may contribute to the manifestation of behavioural and cognitive anomalies that are associated with schizophrenia.
Resumo:
PURPOSE: To investigate the influence of demethylation with 5-aza-cytidine (AZA) on radiation sensitivity and to define the intrinsic radiation sensitivity of methylation deficient colorectal carcinoma cells. METHODS AND MATERIALS: Radiation sensitizing effects of AZA were investigated in four colorectal carcinoma cell lines (HCT116, SW480, L174 T, Co115), defining influence of AZA on proliferation, clonogenic survival, and cell cycling with or without ionizing radiation. The methylation status for cancer or DNA damage response-related genes silenced by promoter methylation was determined. The effect of deletion of the potential target genes (DNMT1, DNMT3b, and double mutants) on radiation sensitivity was analyzed. RESULTS: AZA showed radiation sensitizing properties at >or=1 micromol/l, a concentration that does not interfere with the cell cycle by itself, in all four tested cell lines with a sensitivity-enhancing ratio (SER) of 1.6 to 2.1 (confidence interval [CI] 0.9-3.3). AZA successfully demethylated promoters of p16 and hMLH1, genes associated with ionizing radiation response. Prolonged exposure to low-dose AZA resulted in sustained radiosensitivity if associated with persistent genomic hypomethylation after recovery from AZA. Compared with maternal HCT116 cells, DNMT3b-defcient deficient cells were more sensitive to radiation with a SER of 2.0 (CI 0.9-2.1; p = 0.03), and DNMT3b/DNMT1-/- double-deficient cells showed a SER of 1.6 (CI 0.5-2.7; p = 0.09). CONCLUSIONS: AZA-induced genomic hypomethylation results in enhanced radiation sensitivity in colorectal carcinoma. The mediators leading to sensitization remain unknown. Defining the specific factors associated with radiation sensitization after genomic demethylation may open the way to better targeting for the purpose of radiation sensitization.
Value of PET/CT versus contrast-enhanced CT in identifying chest wall invasion (T3) by NSCLC [B-671]
Resumo:
Purpose: To determine the diagnostic value of 18F-FDG PET/CT versus contrastenhanced CT in identifying chest wall invasion by NSCLC. Methods and Materials: The primary selection criterion was a peripheral tumor of any size with contact to the chest wall. A total of 25 patients with pathologically proven NSCLC satisfied these criteria. Chest wall invasion was interpreted upon PET/CT when a frank costal or intercostal 18F-FDG uptake was identified with or without concomitant morphologic alterations. On the other hand, the existence of periosteal rib reaction/erosion, chest wall thickening or obliteration of the pleural fat layer either separately or combined were considered essential diagnostic criteria for disease extension into the chest wall upon contrast-enhanced CT. The results were correlated with the final histological analysis. Results: Among the studied cohort, 13/25 (52%) patients had chest wall invasion consistent with T3 disease. Both PET/CT and contrast-enhanced CT successfully identified 12/13 (92%) of these patients. The single false-negative result was due to parietal pleural invasion. On the other hand, one false-positive result was encountered by PET/CT in a dyspneic patient; whereas, CT analysis revealed false-positive results in six patients. In these patients, periosteal rib reaction (n = 2) or asymmetric enlargement of adjacent chest wall muscles (n = 1) were identified along with an obliterated pleural fat layer (n = 6). The sensitivity, specificity, and accuracy of PET/CT and contrast-enhanced CT were 92, 91 and 92% versus 92, 50 and 72%. Conclusion: 18F-FDG PET/CT is an accurate diagnostic modality in identifying.
Resumo:
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Resumo:
In schizophrenia, a developmental redox dysregulation constitutes one 'hub' on which converge genetic impairments of glutathione synthesis and environmental vulnerability factors generating oxidative stress. Their timing at critical periods of neurodevelopment could play a decisive role in inducing impairment of neural connectivity and synchronization as observed in schizophrenia. In experimental models, such redox dysregulation induces anomalies strikingly similar to those observed in patients. This is mediated by hypoactive NMDA receptors, impairment of fast-spiking parvalbumin GABA interneurons and deficit in myelination. A treatment restoring the redox balance without side effects yields improvements of negative symptoms in chronic patients. Novel interventions based on these mechanisms if applied in early phases of the disease hold great therapeutic promise.
Resumo:
The Computational Biophysics Group at the Universitat Pompeu Fabra (GRIB-UPF) hosts two unique computational resources dedicated to the execution of large scale molecular dynamics (MD) simulations: (a) the ACMD molecular-dynamics software, used on standard personal computers with graphical processing units (GPUs); and (b) the GPUGRID. net computing network, supported by users distributed worldwide that volunteer GPUs for biomedical research. We leveraged these resources and developed studies, protocols and open-source software to elucidate energetics and pathways of a number of biomolecular systems, with a special focus on flexible proteins with many degrees of freedom. First, we characterized ion permeation through the bactericidal model protein Gramicidin A conducting one of the largest studies to date with the steered MD biasing methodology. Next, we addressed an open problem in structural biology, the determination of drug-protein association kinetics; we reconstructed the binding free energy, association, and dissaciociation rates of a drug like model system through a spatial decomposition and a Makov-chain analysis. The work was published in the Proceedings of the National Academy of Sciences and become one of the few landmark papers elucidating a ligand-binding pathway. Furthermore, we investigated the unstructured Kinase Inducible Domain (KID), a 28-peptide central to signalling and transcriptional response; the kinetics of this challenging system was modelled with a Markovian approach in collaboration with Frank Noe’s group at the Freie University of Berlin. The impact of the funding includes three peer-reviewed publication on high-impact journals; three more papers under review; four MD analysis components, released as open-source software; MD protocols; didactic material, and code for the hosting group.
Resumo:
La situació econòmica actual porta a moltes i diverses conseqüències en diferents àmbits, un d’ells és el consum. Les marques blanques s’han fet un lloc important en la nostra cistella de consum, sobretot en aquest últim any, i és aquest impacte de la crisi a les marques blanques el que intentem analitzar en el nostre treball.El tema central del treball es basa en endinsar-nos en el món de les marques blanques prestant especial interès al seu context actual, una situació de crisi econòmica i un conflicte vigent entre marques blanques i marques de renom.En primer lloc, hem analitzat la situació actual del sector. Per això, hem obtingut diversa informació procedent tant dels mitjans de comunicació com d’estudis realitzats per diferents consultores.Una vegada analitzada l’actualitat, hem cregut convenient centrar-nos en dos casos concrets per tal d’acotar l’anàlisi i obtenir resultats més fiables. En aquest apartat, introduïm al lector a la realitat de les empreses Grup Bonpreu i Mercadona i lesanalitzem principalment des de la seva política respecte la marca blanca.Seguidament, una part fonamental del treball es basa en l’anàlisi de les enquestes realitzades a varis establiments de les cadenes escollides. A partir del resultat d’aquestes enquestes, hem pogut realitzar comparacions entre les dues empreses pel que fa a les seves estratègies, els preus i els hàbits de consum dels seus clients.També hem vist que existeixen diferents perfils de consumidor pel que fa a les dues empreses escollides, ja que són presents grans diferències en les estratègies d’ambdues cadenes.Amb tot això, hem comprovat que, efectivament, el consum de marques blanques ha augmentat en aquest període de crisi i que, aquest fet és degut, en gran part, al canvi de comportament de compra dels consumidors en aquest últim any.