963 resultados para HUMAN-TUMOR CELLS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue-specific stem cells found in adult tissues can participate in the repair process following injury. However, adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differentiation and the plasticity of fetal cartilaginous cells. We compared the TGF-β3-induced chondrogenic differentiation of human fetal cells isolated from spine and cartilage tissues to that of human bone marrow stromal cells (BMSC). Stem cell surface markers and adipogenic and osteogenic plasticity of the two fetal cell types were also assessed. TGF-β3 stimulation of fetal cells cultured in high cell density led to the production of aggrecan, type I and II collagens, and variable levels of type X collagen. Although fetal cells showed the same pattern of surface stem cell markers as BMSCs, both type of fetal cells had lower adipogenic and osteogenic differentiation capacity than BMSCs. Fetal cells from femoral head showed higher adipogenic differentiation than fetal cells from spine. These results show that fetal cells are already differentiated cells and may be a good compromise between stem cells and adult tissue cells for a cell-based therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We produced three monoclonal antibodies, BF7, GE2 and CG12, against cultured human glioma cells. Their specificity was tested by an indirect antibody-binding radioimmunoassay on a panel of glial and non-glial tumor cell lines. BF7 and GE2 react preferentially with glioma cells and, except for one colon carcinoma line, they do not bind to the control non-neuroectodermal cells; they appear to be directed against common malignant glioma associated antigens. CG12, the third monoclonal antibody, binds to the great majority of tumor cell lines of neuroectodermal origin and does not bind to any other cell lines tested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Medulloblastomas (MB) are the most common malignant brain tumors in childhood. Alkylator-based drugs are effective agents in the treatment of patients with MB. In several tumors, including malignant glioma, elevated O(6)-methylguanine-DNA methyltransferase (MGMT) expression levels or lack of MGMT promoter methylation have been found to be associated with resistance to alkylating chemotherapeutic agents such as temozolomide (TMZ). In this study, we examined the MGMT status of MB and central nervous system primitive neuroectodermal tumor (PNET) cells and two large sets of primary MB. In seven MB/PNET cell lines investigated, MGMT promoter methylation was detected only in D425 human MB cells as assayed by the qualitative methylation-specific PCR and the more quantitative pyrosequencing assay. In D425 human MB cells, MGMT mRNA and protein expression was clearly lower when compared with the MGMT expression in the other MB/PNET cell lines. In MB/PNET cells, sensitivity towards TMZ and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) correlated with MGMT methylation and MGMT mRNA expression. Pyrosequencing in 67 primary MB samples revealed a mean percentage of MGMT methylation of 3.7-92% (mean: 13.25%, median: 10.67%). Percentage of MGMT methylation and MGMT mRNA expression as determined by quantitative RT-PCR correlated inversely (n = 46; Pearson correlation r (2) = 0.14, P = 0.01). We then analyzed MGMT mRNA expression in a second set of 47 formalin-fixed paraffin-embedded primary MB samples from clinically well-documented patients treated within the prospective randomized multicenter trial HIT'91. No association was found between MGMT mRNA expression and progression-free or overall survival. Therefore, it is not currently recommended to use MGMT mRNA expression analysis to determine who should receive alkylating agents and who should not.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Engraftment of primary pancreas ductal adenocarcinomas (PDAC) in mice to generate patient-derived xenograft (PDX) models is a promising platform for biological and therapeutic studies in this disease. However, these models are still incompletely characterized. Here, we measured the impact of the murine tumor environment on the gene expression of the engrafted human tumoral cells. METHODS: We have analyzed gene expression profiles from 35 new PDX models and compared them with previously published microarray data of 18 PDX models, 53 primary tumors and 41 cell lines from PDAC. The results obtained in the PDAC system were further compared with public available microarray data from 42 PDX models, 108 primary tumors and 32 cell lines from hepatocellular carcinoma (HCC). We developed a robust analysis protocol to explore the gene expression space. In addition, we completed the analysis with a functional characterization of PDX models, including if changes were caused by murine environment or by serial passing. RESULTS: Our results showed that PDX models derived from PDAC, or HCC, were clearly different to the cell lines derived from the same cancer tissues. Indeed, PDAC- and HCC-derived cell lines are indistinguishable from each other based on their gene expression profiles. In contrast, the transcriptomes of PDAC and HCC PDX models can be separated into two different groups that share some partial similarity with their corresponding original primary tumors. Our results point to the lack of human stromal involvement in PDXs as a major factor contributing to their differences from the original primary tumors. The main functional differences between pancreatic PDX models and human PDAC are the lower expression of genes involved in pathways related to extracellular matrix and hemostasis and the up- regulation of cell cycle genes. Importantly, most of these differences are detected in the first passages after the tumor engraftment. CONCLUSIONS: Our results suggest that PDX models of PDAC and HCC retain, to some extent, a gene expression memory of the original primary tumors, while this pattern is not detected in conventional cancer cell lines. Expression changes in PDXs are mainly related to pathways reflecting the lack of human infiltrating cells and the adaptation to a new environment. We also provide evidence of the stability of gene expression patterns over subsequent passages, indicating early phases of the adaptation process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SUMMARYAs a result of evolution, humans are equipped with an intricate but very effective immune system with multiple defense mechanisms primarily providing protection from infections. This system comprises various cell types, including T-lymphocytes, which are able to recognize and directly kill infected cells. T-cells are not only able to recognize cells carrying foreign antigens, such as virus-infected cells, but also autologous cells. In autoimmune diseases, e.g. multiple sclerosis, T- cells attack autologous cells and cause the destruction of healthy tissue. To prevent aberrant immune reactions, but also to prevent damage caused by an overreacting immune response against foreign targets, there are multiple systems in place that attenuate T-cell responses.By contrast, anti-self immune responses may be highly welcome in malignant diseases. It has been demonstrated that activated T-cells are able to recognize and lyse tumor cells, and may even lead to successful cure of cancer patients. Through vaccination, and especially with the help of powerful adjuvants, frequencies of tumor-reactive T-cells can be augmented drastically. However, the efficacy of anti-tumor responses is diminished by the same checks and balances preventing the human body from harm induced by overly activated T-cells in infections.In the context of my thesis, we studied spontaneous and vaccination induced T-cell responses in melanoma patients. The aim of my studies was to identify situations of T-cell suppression, and pinpoint immune suppressive mechanisms triggered by malignant diseases. We applied recently developed techniques such as multiparameter flow cytometry and gene arrays, allowing the characterization of tumor-reactive T-cells directly ex vivo. In our project, we determined functional capabilities, protein expression, and gene expression profiles of small numbers of T- cells from metastatic tissue and blood obtained from healthy donors and melanoma patients. We found evidence that tumor-specific T-cells were functionally efficient effector cells in peripheral blood, but severely exhausted in metastatic tissue. Our molecular screening revealed the upregulation of multiple inhibitory receptors on tumor-specific T-cells, likely implied in T-cell exhaustion. Functional attenuation of tumor-specific T-cells via inhibitory receptors depended on the anatomical location and immune suppressive mechanisms in the tumor microenvironment, which appeared more important than self-tolerance and anergy mechanisms. Our data reveal novel potential targets for cancer therapy, and contribute to the understanding of cancer biology.RÉSUMÉAu cours de l'évolution, les êtres humains se sont vus doter d'un système immunitaire complexe mais très efficace, avec de multiples mécanismes de défense, principalement contre les infections. Ce système comprend différents types de cellules, dont les lymphocytes Τ qui sont capables de reconnaître et de tuer directement des cellules infectées. Les cellules Τ reconnaissent non seulement des cellules infectées par des virus, mais également des cellules autologues. Dans le cas de maladies auto-immunes, comme par exemple la sclérose en plaques, les cellules Τ s'attaquent à des cellules autologues, ce qui engendre la destruction des tissus sains. Il existe plusieurs systèmes de contrôle des réponses Τ afin de minimiser les réactions immunitaires aberrantes et d'empêcher les dégâts causés par une réponse immunitaire trop importante contre une cible étrangère.Dans le cas de maladies malignes en revanche, une réponse auto-immune peut être avantageuse. Il a été démontré que les lymphocytes Τ étaient également capables de reconnaître et de tuer des cellules tumorales, pouvant même mener à la guérison d'un patient cancéreux. La vaccination peut augmenter fortement la fréquence des cellules Τ réagissant contre une tumeur, particulièrement si elle est combinée avec des adjuvants puissants. Cependant, l'efficacité d'une réponse antitumorale est atténuée par ces mêmes mécanismes de contrôle qui protègent le corps humain des dégâts causés par des cellules Τ activées trop fortement pendant une infection.Dans le cadre de ma recherche de thèse, nous avons étudié les réponses Τ spontanées et induites par la vaccination dans des patients atteints du mélanome. Le but était d'identifier des conditions dans lesquelles les réponses des cellules Τ seraient atténuées, voire inhibées, et d'élucider les mécanismes de suppression immunitaire engendrés par le cancer. Par le biais de techniques nouvelles comprenant la cryométrie de flux et l'analyse globale de l'expression génique à partir d'un nombre minimal de cellules, il nous fut possible de caractériser des cellules Τ réactives contre des tumeurs directement ex vivo. Nous avons examiné les profiles d'expression de gènes et de protéines, ainsi que les capacités fonctionnelles des cellules Τ isolées à partir de tissus métastatiques et à partir du sang de patients. Nos résultats indiquent que les cellules Τ spécifiques aux antigènes tumoraux sont fonctionnelles dans le sang, mais qu'elles sont épuisées dans les tissus métastatiques. Nous avons découvert dans les cellules Τ antitumorales une augmentation de l'expression des récepteurs inhibiteurs probablement impliqués dans l'épuisement de ces lymphocytes T. Cette expression particulière de récepteurs inhibiteurs dépendrait donc de leur localisation anatomique et des mécanismes de suppression existant dans l'environnement immédiat de la tumeur. Nos données révèlent ainsi de nouvelles cibles potentielles pour l'immunothérapie du cancer et contribuent à la compréhension biologique du cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IB1/JIP-1 is a scaffold protein that regulates the c-Jun NH(2)-terminal kinase (JNK) signaling pathway, which is activated by environmental stresses and/or by treatment with proinflammatory cytokines including IL-1beta and TNF-alpha. The JNKs play an essential role in many biological processes, including the maturation and differentiation of immune cells and the apoptosis of cell targets of the immune system. IB1 is expressed predominantly in brain and pancreatic beta-cells where it protects cells from proapoptotic programs. Recently, a mutation in the amino-terminus of IB1 was associated with diabetes. A novel isoform, IB2, was cloned and characterized. Overall, both IB1 and IB2 proteins share a very similar organization, with a JNK-binding domain, a Src homology 3 domain, a phosphotyrosine-interacting domain, and polyacidic and polyproline stretches located at similar positions. The IB2 gene (HGMW-approved symbol MAPK8IP2) maps to human chromosome 22q13 and contains 10 coding exons. Northern and RT-PCR analyses indicate that IB2 is expressed in brain and in pancreatic cells, including insulin-secreting cells. IB2 interacts with both JNK and the JNK-kinase MKK7. In addition, ectopic expression of the JNK-binding domain of IB2 decreases IL-1beta-induced pancreatic beta-cell death. These data establish IB2 as a novel scaffold protein that regulates the JNK signaling pathway in brain and pancreatic beta-cells and indicate that IB2 represents a novel candidate gene for diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The diagnosis of leptomeningeal metastases is usually confirmed by the finding of malignant cells by cytologic examination in the cerebrospinal fluid (CSF). More sensitive and specific cancer biomarkers may improve the detection of tumor cells in the CSF. Promoter methylation of the human telomerase reverse transcriptase (hTERT) gene characterizes most cancer cells. The aim of this study was to develop a sensitive method to detect hTERT methylation and to explore its use as a cancer biomarker in CSF. EXPERIMENTAL DESIGN: In 77 CSF specimens from 67 patients, hTERT promoter methylation was evaluated using real-time methylation-sensitive high-resolution melting (MS-HRM) and real-time TaqMan PCR and MS-HRM in a single-tube assay. RESULTS: Real-time MS-HRM assay was able to detect down to 1% hTERT-methylated DNA in a background of unmethylated DNA. PCR products were obtained from 90% (69/77) of CSF samples. No false positive hTERT was detected in the 21 non-neoplastic control cases, given to the method a specificity of 100%. The sensitivity of the real-time MS-HRM compared with the cytologic gold standard analysis was of 92% (11/12). Twenty-six CSFs from 22 patients with an hTERT-methylated primary tumor showed cytologic results suspicious for malignancy; in 17 (65%) of them, a diagnosis of leptomeningeal metastases could be confirmed by the hTERT methylation test. CONCLUSION: The hTERT real-time MS-HRM approach is fast, specific, sensitive, and could therefore become a valuable tool for diagnosis of leptomeningeal metastases as an adjunct to the traditional examination of CSF. Clin Cancer Res; 19(8); 2216-23. ©2013 AACR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11β-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11β-Hsd2 promoter through the -892/-879 region, indicating that 11β-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for prostate cancer chemotherapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasticity in cancer stem-like cells (CSC) may provide a key basis for cancer heterogeneity and therapeutic response. In this study, we assessed the effect of combining a drug that abrogates CSC properties with standard-of-care therapy in a Ewing sarcoma family tumor (ESFT). Emergence of CSC in this setting has been shown to arise from a defect in TARBP2-dependent microRNA maturation, which can be corrected by exposure to the fluoroquinolone enoxacin. In the present work, primary ESFT from four patients containing CD133(+) CSC subpopulations ranging from 3% to 17% of total tumor cells were subjected to treatment with enoxacin, doxorubicin, or both drugs. Primary ESFT CSC and bulk tumor cells displayed divergent responses to standard-of-care chemotherapy and enoxacin. Doxorubicin, which targets the tumor bulk, displayed toxicity toward primary adherent ESFT cells in culture but not to CSC-enriched ESFT spheres. Conversely, enoxacin, which enhances miRNA maturation by stimulating TARBP2 function, induced apoptosis but only in ESFT spheres. In combination, the two drugs markedly depleted CSCs and strongly reduced primary ESFTs in xenograft assays. Our results identify a potentially attractive therapeutic strategy for ESFT that combines mechanism-based targeting of CSC using a low-toxicity antibiotic with a standard-of-care cytotoxic drug, offering immediate applications for clinical evaluation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To assess the usefulness of combining hyperthermia with a DNA repair inhibitor (double-strand break bait [Dbait]) and its potential application to radiofrequency ablation (RFA) in a preclinical model of human colorectal cancer. MATERIALS AND METHODS: The local ethics committee of animal experimentation approved all investigations. First, the relevance was assessed by studying the survival of four human colorectal adenocarcinoma cell cultures after 1 hour of hyperthermia at 41°C or 43°C with or without Dbait. Human colon adenocarcinoma cells (HT-29) were grafted subcutaneously into nude mice (n = 111). When tumors reached approximately 500 mm(3), mice were treated with Dbait alone (n = 20), sublethal RFA (n = 21), three different Dbait schemes and sublethal RFA (n = 52), or a sham treatment (n = 18). RFA was performed to ablate the tumor center alone. To elucidate antitumor mechanisms, 39 mice were sacrificed for blinded pathologic analysis, including assessment of DNA damage, cell proliferation, and tumor necrosis. Others were monitored for tumor growth and survival. Analyses of variance and log-rank tests were used to evaluate differences. RESULTS: When associated with mild hyperthermia, Dbait induced cytotoxicity in all tested colon cancer cell lines. Sublethal RFA or Dbait treatment alone moderately improved survival (median, 40 days vs 28 days for control; P = .0005) but combination treatment significantly improved survival (median, 84 days vs 40 days for RFA alone, P = .0004), with approximately half of the animals showing complete tumor responses. Pathologic studies showed that the Dbait and RFA combination strongly enhances DNA damage and coagulation areas in tumors. CONCLUSION: Combining Dbait with RFA sensitizes the tumor periphery to mild hyperthermia and increases RFA antitumor efficacy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma "backpack tumor" model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.