970 resultados para HSP40 Heat-Shock Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aground-based tracking camera and coaligned slitless spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth’s atmosphere in June 2010. Good quality spectra were obtained, which showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the blackbody nature of the radiation concluded that the peak average temperature of the surface was about (3100± 100)K. Line spectra from oxygen and nitrogen atoms were used to infer a peak average shock-heated gas temperature of around((7000±400))K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To assess the impact of exposure to ambient heat on urolithiasis among outdoor workers in a subtropical city of China. Methods: The 2003–2010 health check data of a shipbuilding company in Guangzhou, China were acquired. 190 cases and 760 matched controls were involved in this study. We assessed the relationship between exposure to ambient heat and urolithiasis for different occupations using conditional logistic regression. Results: Spray painters were most likely to develop urolithiasis (OR = 4.4; 95% CI: 1.7, 11.4), followed by smelter workers (OR = 4.0; 95% CI: 1.8, 9.2), welders (OR = 3.7; 95% CI: 1.9, 7.2), production security and quality inspectors (OR = 2.7; 95% CI: 1.4, 3.0), and assemblers (OR = 2.2; 95% CI: 1.1, 4.3). Overall, outdoor workers were more likely to present with urolithiasis compared with indoor employees (p b 0.05). In addition, workers with longer cumulative exposure time (OR = 1.5; 95% CI: 1.2, 1.8) and abnormal blood pressure (OR = 1.6; 95% CI: 1.0, 2.5) had higher risk for urolithiasis. Conclusions: Our findings demonstrate a significant association between exposure to ambient heat and urolithiasis among outdoor working populations. Public health intervention strategies should be developed to specifically target outdoor occupations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype-genotype link between the displayed protein and the encoding gene. Results A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50-DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein-plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype-genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a determination of Delta(f)H(298)(HOO) based upon a negative. ion thermodynamic cycle. The photoelectron spectra of HOO- and DOO- were used to measure the molecular electron affinities (EAs). In a separate experiment, a tandem flowing afterglow-selected ion flow tube (FA-SIFT) was used to measure the forward and reverse rate constants for HOO- + HCdropCH reversible arrow HOOH + HCdropC(-) at 298 K, which gave a value for Delta(acid)H(298)(HOO-H). The experiments yield the following values: EA(HOO) = 1.078 +/- 0.006 eV; T-0((X) over tilde HOO - (A) over tilde HOO) = 0.872 +/- 0.007 eV; EA(DOO) = 1.077 +/- 0.005 eV; T-0((X) over tilde DOO - (A) over tilde DOO) = 0.874 +/- 0.007 eV; Delta(acid)G(298)(HOO-H) = 369.5 +/- 0.4 kcal mol(-1); and Delta(acid)H(298)(HOO-H) = 376.5 +/- 0.4 kcal mol(-1). The acidity/EA thermochemical cycle yields values for the bond enthalpies of DH298(HOO-H) = 87.8 +/- 0.5 kcal mol(-1) and Do(HOO-H) = 86.6 +/- 0.5 kcal mol(-1). We recommend the following values for the heats of formation of the hydroperoxyl radical: Delta(f)H(298)(HOO) = 3.2 +/- 0.5 kcal mol(-1) and Delta(f)H(0)(HOO) = 3.9 +/- 0.5 kcal mol(-1); we recommend that these values supersede those listed in the current NIST-JANAF thermochemical tables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations of thermomagnetic convection of paramagnetic fluids placed in a micro-gravity condition (g nearly 0) and under a uniform vertical gradient magnetic field in an open ended square enclosure with ramp heating temperature condition applied on a vertical wall is investigated in this study. In presence of the strong magnetic gradient field thermal convection of the paramagnetic fluid might take place even in a zero-gravity environment as a direct consequence of temperature differences occurring within the fluid. The thermal boundary layer develops adjacent to the hot wall as soon as the ramp temperature condition is applied on it. There are two scenario that can be observed based on the ramp heating time. The steady state of the thermal boundary layer can be reached before the ramp time is finished or vice versa. If the ramp time is larger than the quasi-steady time then the thermal boundary layer is in a quasi-steady mode with convection balancing conduction after the quasi-steady time. Further increase of the heat input simply accelerates the flow to maintain the proper thermal balance. Finally, the boundary layer becomes completely steady state when the ramp time is finished. Effects of magnetic Rayleigh number, Prandtl number and paramagnetic fluid parameter on the flow pattern and heat transfer are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The migration of three human prostate tumor epithelial cell lines (TSU-pr1, PC-3, DU-145) in response to secreted protein from a human prostate stromal cell line was investigated by using the modified blind-well Boyden chamber assay. Migrated cells were quantified by spectrophotometrically measuring the concentration of crystal violet stain extracted from their nuclei. Cell number was correlated linearly with the concentration of extracted crystal violet stain. All three tumor cell lines showed intrinsic migratory ability in the absence of chemoattractants, such that approximately 1-7% of plated cells migrated across the filter of the Boyden chambers during a 5-h incubation period. Prostate tumor cell migration was significantly enhanced (3-13-fold) in response to stromal cell secretory protein in a dose-dependent manner, whereas bovine serum albumin had no effect on stimulating tumor cell migration. Immunoprecipitation of the stromal cell secreted protein with a nerve growth factor antibody partially and significantly reduced its stimulatory activity for tumor cell migration. A Zigmond-Hirsch matrix assay of tumor cell migration in response to various concentration gradients of stromal cell secreted protein demonstrated both chemotaxis and chemokinesis by all three cell lines. These results are consistent with the stromal cell secretory protein stimulation of chemokinetic tumor cell migration through the capsule of the prostate. Outside of the prostate gland metastasis of tumor cells may occur by chemotaxis to preferential sites containing chemoattractants similar to or related to maintenance factors that can substitute for components of stromal cell secretory protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of radiation on natural convection of Newtonian fluid contained in an open cavity is investigated in this study. The governing partial differential equations are solved numerically using the Alternate Direct Implicit method together with the Successive Over Relaxation method. The study is focused on studying the flow pattern and the convective and radiative heat transfer rates are studied for different values of radiation parameters namely, the optical thickness of the fluid, scattering albedo, and the Planck number. It was found that in the optically thin limit, an increase in the optical thickness of the fluid raises the temperature and radiation heat transfer of the fluid. However, a further increase in the optical thickness decreases the radiative heat transfer rate due to increase in the energy level of the fluid, which ultimately reduces the total heat transfer rate within the fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The second of the Hermelin Brain Tumor Center Symposia was held once again at Henry Ford Hospital in Detroit, Michigan on October 24th and 25th, 2003. A public conference was held on the 24th while a closed-door session took place on the 25th. The purpose of these symposia is to bring together experts in a particular field of study with the aim to share information with each other and the public, but then to meet privately to present novel data, hold discussions, and share concepts. While the interaction is intended to benefit all involved, the incentive is the expectation that the shared information will aid researchers at the Hermelin Brain Tumor Center in their quest to identify potential therapeutic targets and explore translational therapeutic strategies for the treatment of patients suffering nervous system tumors...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realizing the promise of molecularly targeted inhibitors for cancer therapy will require a new level of knowledge about how a drug target is wired into the control circuitry of a complex cellular network. Here we review general homeostatic principles of cellular networks that enable the cell to be resilient in the face of molecular perturbations, while at the same time being sensitive to subtle input signals. Insights into such mechanisms may facilitate the development of combination therapies that take advantage of the cellular control circuitry, with the aim of achieving higher efficacy at a lower drug dosage and with a reduced probability of drug-resistance development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionization energy theory is used to calculate the evolution of the resistivity and specific heat curves with respect to different doping elements in the recently discovered superconducting pnictide materials. Electron-conduction mechanism in the pnictides above the structural transition temperature is explained unambiguously, which is also consistent with other strongly correlated materials, such as cuprates, manganites, titanates and magnetic semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.