933 resultados para Gut bacteria
Resumo:
Background: The intestinal microbiome (IM) has extensively been studied in the search for a link of bacteria with the cause of Crohn`s disease (CD). The association might result from the action of a specific pathogen and/or an eventual imbalance in bacterial species composition of the gut. The innumerous virulence associated markers and strategies described for adherent and invasive Escherichia coli (AIEC) have made them putative candidate pathogens for CD. IM of CD patients shows dysbiosis, manifested by the proliferation of bacterial groups such as Enterobacteriaceae and reduction of others such as Lactobacillus and Bifidobacterium. The augmented bacterial population comprising of commensal and/or pathogenic organisms super stimulates the immune system, triggering the inflammatory reactions responsible for the clinical manifestations of the disease. Considering the role played by IM in CD and the multiple variables influencing its species composition, resulting in differences among populations, the objective of this study was to determine the bacterial biodiversity in the mucosa associated microbiome of CD patients from a population not previously subject to this analysis, living in the middle west region of Sao Paulo state. Methods: A total of 4 CD patients and 5 controls subjects attending the Botucatu Medical School of the Sao Paulo State University (UNESP) for routine colonoscopy and who signed an informed consent were included in the study. A number of 2 biopsies, one from the ileum and other from any part of the terminal colon, were taken from each subject and immediately frozen at -70[degrees]C until DNA purification. The bacterial biodiversity was assessed by next generation (ion torrent) sequencing of PCR amplicons of the ribosomal DNA 16S V6 region (16S V6 rDNA). The bacterial identification was performed at the genus level, by alignment of the generated DNA sequences with those available at the ribosomal database project (RDP) website. Results: The overall DNA sequence output was based on an average number of 526,427 reads per run, matching 50 bacterial genus 16SrDNA sequences available at the RDB website, and 22 non matching sequences. Over 95% of the sequences corresponded to taxa belonging to the major phyla: Firmicutes, Bacterioidetes, Proteobacteria and Actinobacteria. Irrespective of the intestinal site analyzed, no case-control differences could be observed in the prevalence of Actinobacteria and Firmicutes. The prevalence of Proteobacteria was higher (40%) in the biopsies of control subjects as compared to that of DC patients (16%). For Bacterioidetes, the higher prevalence was observed among DC patients (33% as opposed to 14,5% in controls). The significance for all comparisons considered a p value < 0,05 in a Chi2 test. No mucosal site specific differences could be observed in IM comparisons of CD and control subjects. Conclusions: The rise in the number of Bacterioidetes observed here among CD patients seems to be in agreement with most of studies published thus far. Yet, the reduction in the number of Proteobacteria along with an apparently unaltered population of Actinobacteria and Firmicutes, which include the so called "beneficial" organisms Bifidobacterium and Lactobacillus were rather surprising. These data suggest that the analyses on the role of IM in CD should consider the multiple variables that may influence its species composition.
Resumo:
Background: The number of Escherichia coli in the gut of Crohn's disease (CD) patients is higher than that of normal subjects, but the virulence potential of these bacteria is not fully known. Previous studies have shown that these E. coli are closely related to extraintestinal pathogenic categories (ExPEC), are able to invade epithelial cells, and usually do not produce exotoxins. We report here the detection, in a CD patient, of an E. coli which belongs to a classical enteropathogenic (EPEC) serotype and displays virulence markers of enteroinvasive (EIEC), enteroaggregative (EAEC) and enterohemorrhagic (EHEC) pathotypes. Methods: The E. coli strain was isolated, in 2009, by classical bacteriological procedures from a 56 year old woman who underwent ileo-terminal resection 1 year before, due to intestinal obstruction. The bacterial characterization was carried out by in vitro adhesion and invasion assays to cultured epithelial cells and macrophages and screening by PCR to identify virulence genetic markers of diarrheogenic E. coli (DEC) and to detect one of the gene combinations which define the phylogroups of the E. coli reference (EcoR) collection. The strain was also tested for the ability to produce biofilm and shiga cytotoxins and had its whole genome sequenced by Ion Torrent Sequencing Technology. Results: The studied strain, which was detected both in ileum biopsies and the stools of the patient, displayed the aggregative adherence (AA) phenotype to Hep-2 cells and an ability to enter Caco-2 cells 3x as high as that of EIEC reference strain and 89% of that of the prototype AIEC LF82 strain. Although it could invade cultured macrophages, the strain was unable to replicate inside these cells. PCR screening revealed the presence of eae, aggR and stx1. Tests with bacterial culture supernatants in Vero cells demonstrating cytotoxicity suggested the production of Stx1. In addition, the strain revealed to be a strong biofilm producer, belonged to the B2 EcoR phylogroup, to the O126:H27 serogroup and to the multilocus sequencing type (MLST) ST3057. The 2 later features were deduced from the whole genome sequence of the strain. Conclusions: The characterization of this E. coli isolate from a CD patient revealed a combination of virulence markers of distinct DEC pathotypes, namely eae and stx1 of EHEC, AA, aggR and biofilm formation of EAEC, and invasiveness of EIEC. These features along with its serotype and phylogroup identity seem to suggest a potential to be involved in CD, an observation which should be tested with additional studies.
Resumo:
We evaluated the effect of gamma irradiation doses (0, 125, 250, and 500 Gy) in control of psychrotrophic bacteria in different strains of Agaricus bisporus (ABI-07/06, ABI-05/03, and PB-1) during storage, cultivated in composts based on oat straw (Avena sativa) and Brachiaria spp. The experimental design was completely randomized in a factorial scheme 4 2 3 (irradiation doses composts strains), with 24 treatments, each consisting of 2 replicates, totaling 48 experimental units (samples of mushrooms). The mushrooms collected from all culture conditions were packaged in plastic polypropylene with 200 g each and subjected to Cobalt-60 irradiator, type Gammacell 220, and dose rate 0.740 kGy h–1 , according to the treatments. Subsequently, the control (nonirradiated) and other treatments were maintained at 4 ± 1°C and 90% relative humidity (RH) in a climatic chamber to perform the microbiological analysis of mushrooms on the 1st and 14th day of storage. According to the results, it was found that the highest mean colony psychotrophic count, after 14 days of storage, was observed in strain ABI-07/06 1.30 × 108 g -1 most probable number (MPN) in nonirradiated mushrooms, coming from Brachiaria grass-based compost, and this same strain under the same storage conditions, coming from the same type of compost that underwent a dose of 500 Gy, obtained a significant reduction in mean colonies of psychrotrophic bacteria (2.25 × 104 g –1 MPN). Thus, the irradiation doses tested favored reducing the number of colonies of psychrotrophic bacteria, regardless of the type of compound and strain of A. bisporus.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
No Abstract
Resumo:
Novel water-soluble decacationically armed C-60 and C-70 decaiodide monoadducts, C-60- and C-70[>M(C3N6+C3)(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C-70[>M(C3N6+C3)(2)] produced more HO center dot than C-60[>M(C3N6+C3)(2)], in addition to O-1(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C-60[>M(C3N6+C3)(2)] and C-70[>M(C3N6+C3)(2)], respectively. The hypothesis is that O-1(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO center dot to cause real damage.
Resumo:
Biofilms represent a great concern for food industry, since they can be a source of persistent contamination leading to food spoilage and to the transmission of diseases. To avoid the adhesion of bacteria and the formation of biofilms, an alternative is the pre-conditioning of surfaces using biosurfactants, microbial compounds that can modify the physicochemical properties of surfaces changing bacterial interactions and consequently adhesion. Different concentrations of the biosurfactants, surfactin from Bacillus subtilis and rhamnolipids from Pseudomonas aeruginosa, were evaluated to reduce the adhesion and to disrupt biofilms of food-borne pathogenic bacteria. Individual cultures and mixed cultures of Staphylococcus aureus, Listeria monocytogenes and Salmonella Enteritidis were studied using polystyrene as the model surface. The pre-conditioning with surfactin 0.25% reduced by 42.0% the adhesion of L monocytogenes and S. Enteritidis, whereas the treatment using rhamnolipids 1.0% reduced by 57.8% adhesion of L monocytogenes and by 67.8% adhesion of S. aureus to polystyrene.Biosurfactants were less effective to avoid adhesion of mixed cultures of the bacteria when compared with individual cultures. After 2 h contact with surfactin at 0.1% concentration, the pre-formed biofilms of S. aureus were reduced by 63.7%, L. monocytogenesby 95.9%, S. Enteritidis by 35.5% and the mixed culture biofilm by 58.5%. The rhamnolipids at 0.25% concentration removed 58.5% the biofilm of S. aureus, 26.5% of L monocytogenes, 23.0% of S. Enteritidis and 24.0% the mixed culture after 2 h contact. In general, the increase in concentration of biosurfactants and in the time of contact decreased biofilm removal percentage. These results suggest that surfactin and rhamnolipids can be explored to control the attachment and to disrupt biofilms of individual and mixed cultures of the food-borne pathogens. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.
Resumo:
Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Background: Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods: A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 mu g/mL ozone/oxygen (1: 99) mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (10(5) bacteria/dish). The cultures were divided into 3 groups: 1-ozone-oxygen gaseous mixture containing 20 mu g of O-3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results: The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion: A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents.
Resumo:
The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.
Resumo:
Traditional methods for bacterial identification include Gram staining, culturing, and biochemical assays for phenotypic characterization of the causative organism. These methods can be time-consuming because they require in vitro cultivation of the microorganisms. Recently, however, it has become possible to obtain chemical profiles for lipids, peptides, and proteins that are present in an intact organism, particularly now that new developments have been made for the efficient ionization of biomolecules. MS has therefore become the state-of-the-art technology for microorganism identification in microbiological clinical diagnosis. Here, we introduce an innovative sample preparation method for nonculture-based identification of bacteria in milk. The technique detects characteristic profiles of intact proteins (mostly ribosomal) with the recently introduced MALDI SepsityperTM Kit followed by MALDI-MS. In combination with a dedicated bioinformatics software tool for databank matching, the method allows for almost real-time and reliable genus and species identification. We demonstrate the sensitivity of this protocol by experimentally contaminating pasteurized and homogenized whole milk samples with bacterial loads of 10(3)-10(8) colony-forming units (cfu) of laboratory strains of Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus. For milk samples contaminated with a lower bacterial load (104 cfu mL-1), bacterial identification could be performed after initial incubation at 37 degrees C for 4 h. The sensitivity of the method may be influenced by the bacterial species and count, and therefore, it must be optimized for the specific application. The proposed use of protein markers for nonculture-based bacterial identification allows for high-throughput detection of pathogens present in milk samples. This method could therefore be useful in the veterinary practice and in the dairy industry, such as for the diagnosis of subclinical mastitis and for the sanitary monitoring of raw and processed milk products.
Resumo:
This study aimed to enumerate and identify lactic acid bacteria and Enterobacteriaceae from spoiled and nonspoiled chilled vacuum-packaged beef and determine their potential to cause blown pack spoilage. These microbial groups were also enumerated in nonspoiled samples and detected in abattoir samples. The potential of isolates to cause blown pack spoilage of vacuum-packaged beef stored at chilled temperature (4 degrees C) and abuse temperature (15 degrees C) was investigated. Populations of lactic acid bacteria in exudate of spoiled and nonspoiled samples were not significantly different (P > 0.05), whereas the number of lactic acid bacteria on the surface was significantly higher (P < 0.05) in spoiled samples as compared to nonspoiled samples. The population of Enterobacteriaceae species in exudate and on the surface of samples were significantly higher (P < 0.05) in spoiled packs in comparison with nonspoiled packs. Results of the deterioration potential showed that blown pack spoilage was noticeable after 7 days at 15 degrees C and after 6 weeks at 4 degrees C for samples inoculated with Hafnia alvei.
Resumo:
Earthworms emit denitrification-derived nitrous oxide and fermentation-derived molecular hydrogen. The present study demonstrated that the earthworm Eudrilus eugeniae, obtained in Brazil, emitted methane. Other worms displayed a lesser or no capacity to emit methane. Gene and transcript analyses of mcrA (encoding the alpha subunit of methyl-CoM reductase) in gut contents of E. eugeniae suggested that Methanosarcinaceae, Methanobacteriaceae, and Methanomicrobiaceae might be associated with this emission.
Resumo:
Introduction: Prebiotics positively affect gut microbiota composition, thus improving gut function. These properties may be useful for the treatment of constipation. Objectives: This study assessed the tolerance and effectiveness of a prebiotic inulin/partially hydrolyzed guar gum mixture (I-PHGG) for the treatment of constipation in females, as well as its influence on the composition of intestinal microbiota and production of short chain fatty acids. Methods: Our study enrolled 60 constipated female health worker volunteers. Participants reported less than 3 bowel movements per week. Volunteers were randomized to treatment with prebiotic or placebo. Treatment consisted of 3 weeks supplementation with 15 g/d I-PHGG (fiber group) or maltodextrin (placebo group). Abdominal discomfort, flatulence, stool consistency, and bowel movements were evaluated by a recorded daily questionnaire and a weekly interview. Changes in fecal bacterial population and short chain fatty acids were assessed by real-time PCR and gas chromatography, respectively. Results: There was an increased frequency of weekly bowel movements and patient satisfaction in both the fiber and placebo groups with no significant differences. Total Clostridium sp significantly decreased in the fiber group (p = 0.046) and increased in the placebo group (p = 0.047). There were no changes in fecal short chain fatty acid profile. Conclusions: Consumption of I-PHGG produced clinical results comparable to placebo in constipated females, but had additional protective effects on gut rnicrobiota by decreasing the amount of pathological bacteria of the Clostridium genera.