935 resultados para Guidance
Resumo:
In recent years Australian Law Schools have implemented various forms of peer assisted learning or mentoring, including career mentoring by former students of final year students and orientation mentoring or tutoring by later year students of incoming first year students. The focus of these programs therefore is on the transition into or out of law school. There is not always as great an emphasis however, as part of this transition, on the use of law students belonging to the same unit cohort as a learning resource for each other within their degree. This is despite the claimed preference of Generation Y students for collaborative learning environments, authentic learning experiences and the development of marketable workplace skills. In the workplace, be it professional legal practice or otherwise, colleagues rely heavily on each other for information, support and guidance. In the undergraduate law degree at the Queensland University of Technology (‘QUT’) the Torts Student Peer Mentor Program aims to supplement a student’s understanding of the substantive law of torts with the development of life-long skills. As such it has the primary objective, albeit through discussion facilitated by more senior students, of encouraging first year students to develop for themselves the skills they need to be successful both as law students and as legal practitioners. Examples of such skills include those relevant to: preparation for assessment tasks; group work; problem solving, cognition and critical thinking; independent learning; and communication. Significantly, in this way, not only do the mentees benefit from involvement in the program, but the peer mentors, or program facilitators, themselves also benefit from their participation in the real world learning environment the program provides. This paper outlines the development and implementation of the above program, the pedagogy which influenced it, and its impact on student learning experiences
Resumo:
This study compared the determinants of physical activity in active and low-active African-American sixth grade students (N=108, 57 F, 51 M). Objective assessments of physical activity over a seven-day period were obtained using the CSA 7164 accelerometer. Students were classified as active if they exhibited three pr more 20-minute bouts of moderate to vigorous physical activity over the seven-day period. Relative to low-actives, active boys reported significantly higher levels of self-efficacy, greater involvement in community physical activity organizations, and were significantly more likely to perceive their mother us active. Relative to low-actives, active girls reported significantly higher levels of physical activity self-efficacy, greater positive beliefs regarding physical activity outcomes, and were significantly less likely to watch television or play video games for greater than or equal to 3 hrs/day. These observations provide preliminary guidance as to the design of physical activity interventions targeted at African-American youth.
Resumo:
In Pollock v Thiess Pty Ltd, McMeekin J considered two applications for the withdrawal of deemed admissions. The judgment provides important guidance on pleadings and deemed admissions under the Uniform Civil Procedure Rules 1999 (Qld).
Resumo:
Most commentators understand that contemporary social, economic and environmental challenges require quality governance from global to local scales. While public scrutiny of governance has increased in recent years, the literature on frameworks and methods for analysis in complex, poly-centric and multi-thematic governance systems remains fragmented; displaying many disciplinary or sectoral biases. This paper establishes a stronger theory-based foundation for the analysis of complex governance systems. It also develops a clear analytical framework applicable across a vast array of differing governance themes, domains and scales (GSA). The key methodological steps and evaluative criteria for the GSA framework are determined and practical guidance for its application in reform is provided.
Resumo:
Management of project knowledge is a critical factor for project success. Project Management Office (PMO) is a unit within organisations to centrally facilitate, manage and control organisational project for improving the rate of project success. Due to increasing interest of developing PMO, the Project Management Maturity Model (PMMM) has been proposed to develop PMOs gradually. The PMMM contributes to evolvement of PMO from immature to mature level through addressing appropriate PM practices. Despite the importance of project knowledge, it has not been extensively investigated in project environments. In addition, the existing PMMMs not only do not address management of project knowledge, but also they recommend little criteria to assess the maturity of PMO from KM point of view. The absence of KM discussion in current PMMMs was defined as the subject of a research project in order for addressing KM practices at various maturity levels of PMO. In order to address the mentioned gap, a framework has been developed based on the current discussions of both PM and KM. The proposed framework comprises three premises: KM processes and practices, PMMM, and KM Maturity Model (KMMM). The incorporation of KMMM practices at various maturity levels of PMO is one of the significance of this framework. It proposes numbers of KM strategies, processes, and practices to address project knowledge management at various levels PMO. This framework shall be useful guidance for developing PMOs from KM perspective. In other words, it contributes to management of project knowledge, as a key for project success. The proposed framework follows the process-based approach and it could be employed alongside the current PMMMs for PMO development. This paper presents the developed framework, theoretical background, premises, proposed KM practices, and processes to be employed in Project-based Organisations and PMOs. This framework has been examined at numbers of case studies with different maturity levels. The case studies outcomes, which will be subjects for future papers, have not shown any significant contradiction yet, however, more investigations are being conducted to validate the proposed framework.
Resumo:
Knowledge Management (KM) is vital factor to successfully undertake projects. The temporary nature of projects necessitates employing useful KM practices to reduce any issues such as knowledge leakiness and rework. The Project Management Office (PMO) is a unit within organisations to facilitate and oversee organisational projects. Project Management Maturity Models (PMMM) show the development of PMOs from immature to mature levels. The existing PMMMs have focused on discussing Project Management (PM) practices, however, the management of project knowledge is yet to be addressed, at various levels of maturity. A research project was undertaken to investigate the mentioned gap for addressing KM practices at the existing PMMMs. Due to the exploratory and inductive nature of this research, qualitative methods using case studies were chosen as the research methodology to investigate the problem in the real world. In total, three cases selected from different industries: research; mining and government organisations, to provide broad categories for research and research questions were examined using the developed framework. This paper presents the findings from the investigation of the research organisation with the lowest level of maturity. From KM process point of view, knowledge creation and capturing are the most important processes, while knowledge transferring and reusing received less attention. In addition, it was revealed that provision of “knowledge about client” and “project management knowledge” are the most important types of knowledge that are required at this level of maturity. The results also revealed that PMOs with higher maturity level have better knowledge management, however, some improvement is needed. In addition, the importance of KM processes varies at different levels of maturity. In conclusion, the outcomes of this paper could provide powerful guidance to PMOs at lowest level of maturity from KM point of view.
Resumo:
Purpose The purpose of this paper is to foster a common understanding of business process management (BPM) by proposing a set of ten principles that characterize BPM as a research domain and guide its successful use in organizational practice. Design/methodology/approach The identification and discussion of the principles reflects our viewpoint, which was informed by extant literature and focus groups, including 20 BPM experts from academia and practice. Findings We identify ten principles which represent a set of capabilities essential for mastering contemporary and future challenges in BPM. Their antonyms signify potential roadblocks and bad practices in BPM. We also identify a set of open research questions that can guide future BPM research. Research limitation/implication Our findings suggest several areas of research regarding each of the identified principles of good BPM. Also, the principles themselves should be systematically and empirically examined in future studies. Practical implications – Our findings allow practitioners to comprehensively scope their BPM initiatives and provide a general guidance for BPM implementation. Moreover, the principles may also serve to tackle contemporary issues in other management areas. Originality/value This is the first paper that distills principles of BPM in the sense of both good and bad practice recommendations. The value of the principles lies in providing normative advice to practitioners as well as in identifying open research areas for academia, thereby extending the reach and richness of BPM beyond its traditional frontiers.
Resumo:
Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.
Resumo:
В статье представлено развитие принципа построения автоматической пилотажно-навигационной системы (АПНС) для беспилотного летательного аппарата (БЛА). Принцип заключается в синтезе комплексных систем управления БПЛА не только на основе использования алгоритмов БИНС, но и алгоритмов, объединяющих в себе решение задач формирования и отработки сформированной траектории резервированной системой управления и навигации. Приведены результаты аналитического исследования и данные летных экспериментов разработанных алгоритмов АПНС БЛА, обеспечивающих дополнительное резервирование алгоритмов навигации и наделяющих БЛА новым функциональной способностью по выходу в заданную точку пространства с заданной скоростью в заданный момент времени с учетом атмосферных ветровых возмущений. Предложена и испытана методика идентификации параметров воздушной атмосферы: направления и скорости W ветра. Данные летных испытаний полученного решения задачи терминальной навигации демонстрируют устойчивую работу синтезированных алгоритмов управления в различных метеоусловиях. The article presents a progress in principle of development of automatic navigation management system (ANMS) for small unmanned aerial vehicle (UAV). The principle defines a development of integrated control systems for UAV based on tight coupling of strap down inertial navigation system algorithms and algorithms of redundant flight management system to form and control flight trajectory. The results of the research and flight testing of the developed ANMS UAV algorithms are presented. The system demonstrates advanced functional redundancy of UAV guidance. The system enables new UAV capability to perform autonomous multidimensional navigation along waypoints with controlled speed and time of arrival taking into account wind. The paper describes the technique for real-time identification of atmosphere parameters such as wind direction and wind speed. The flight test results demonstrate robustness of the algorithms in diverse meteorological conditions.
Resumo:
Dissociable processes for conscious perception (“what” processing) and guidance of action (“how” processing) have been identified in visual, auditory, and somatosensory systems. The present study was designed to find similar dissociation within whole-body movements in which the presence of vestibular information creates a unique perceptual condition. In two experiments, blindfolded participants walked along a linear path and specified the walked distance by verbally estimating it (“what” measure) and by pulling a length of tape that matched the walked distance (“how” measure). Although these two measures yielded largely comparable responses under a normal walking condition, variability in verbal estimates showed a qualitatively different pattern from that in tape-pulling when sensory input into walking was altered by having participants wear a heavy backpack. This suggests that the “what” versus “how” dissociation exists in whole-body movements as well, supporting a claim that it is a general principle with which perceptual systems are organized.
Resumo:
Engineering design processes are necessary to attain the requisite standards of integrity for high-assurance safety-related systems. Additionally, human factors design initiatives can provide critical insights that parameterise their development. Unfortunately, the popular perception of human factors as a “forced marriage” between engineering and psychology often provokes views where the ‘human factor’ is perceived as a threat to systems design. Some popular performance-based standards for developing safety-related systems advocate identifying and managing human factors throughout the system lifecycle. However, they also have a tendency to fall short in their guidance on the application of human factors methods and tools, let alone how the outputs generated can be integrated in to various stages of the design process. This case study describes a project that converged engineering with human factors to develop a safety argument for new low-cost railway level crossing technology for system-wide implementation in Australia. The paper enjoins the perspectives of a software engineer and cognitive psychologist and their involvement in the project over two years of collaborative work to develop a safety argument for low-cost level crossing technology. Safety and reliability requirements were informed by applying human factors analytical tools that supported the evaluation and quantification of human reliability where users interfaced with the technology. The project team was confronted with significant challenges in cross-disciplinary engagement, particularly with the complexities of dealing with incongruences in disciplinary language. They were also encouraged to think ‘outside the box’ as to how users of a system interpreted system states and ehaviour. Importantly, some of these states, while considered safe within the boundary of the constituent systems that implemented safety-related functions, could actually lead the users to engage in deviant behaviour. Psychology explained how user compliance could be eroded to levels that effectively undermined levels of risk reduction afforded by systems. Linking the engineering and psychology disciplines intuitively, overall safety performance was improved by introducing technical requirements and making design decisions that minimized the system states and behaviours that led to user deviancy. As a commentary on the utility of transdisciplinary collaboration for technical specification, the processes used to bridge the two disciplines are conceptualised in a graphical model.
Resumo:
Charities' fundraising financial transactions should be reported in the interests of accountability, and the report should be publicly available. However, research shows that at present there is little consistency in how fundraising is defined or in how such transactions are reported, and little guidance from accounting standards. This report examines whether the current reporting of fundraising in annual financial statements by Australian charities is fit for the purposes of informing the donating public and other stakeholders, whether through the Australian Charities and Not-for-profits Commission’s registry strategy or through other means such as private ratings agencies. The authors endeavour to suggest a way forward if it is not.
Resumo:
While data quality has been identified as a critical factor associated with enterprise resource planning (ERP) failure, the relationship between ERP stakeholders, the information they require and its relationship to ERP outcomes continues to be poorly understood. Applying stakeholder theory to the problem of ERP performance, we put forward a framework articulating the fundamental differences in the way users differentiate between ERP data quality and utility. We argue that the failure of ERPs to produce significant organisational outcomes can be attributed to conflict between stakeholder groups over whether the data contained within an ERP is of adequate ‘quality’. The framework provides guidance as how to manage data flows between stakeholders, offering insight into each of their specific data requirements. The framework provides support for the idea that stakeholder affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility.
Resumo:
Late intervention often means that young people on the autism spectrum appear to act on impulse, seem disorganized, or fail to learn from past experiences. In this practical, effective resource, the authors share tried and tested techniques for creating and using a personal planner to help individuals on the autism spectrum to develop independence. "Planning to Learn" is split into three parts. The first part guides adults in helping young people to make sense of the world and to develop and practise coping strategies for any given situation. The authors also explain how simple visual and verbal cues can help people to cope successfully in stressful situations. The second part provides worksheets for the young person to complete to learn how to use plans in different situations, for example staying calm when waiting for a doctor, or coping with a change in the school timetable. Each individual makes a unique planner with procedures to refer to, such as responding to pressure, calming down, being organised, and being around people. The third part includes useful cards, schedules and plans for photocopying and including in the planner. This illustrated photocopiable workbook is packed with guidance, support and helpful notes for those new to, or experienced in, working with children and young people with ASD. It can be used within educational and community settings or at home.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.