988 resultados para Growth suppression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental validation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object autocorrelation,namely, the zero-order term,from holographic data,thereby improving the reconstruction bandwidth of complex wavefronts. The algorithm is based on nonlinear filtering and can be applied to standard DHM setups with realistic recording conditions.We study the robustness of the technique under different experimental configurations,and quantitatively demonstrate its enhancement capabilities on phase signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the growth of an isolated precipitate when the matrix diffusivity depends on the composition. We have simulated precipitate growth using the Cahn-Hilliard model, and find good agreement between our results and those from a sharp interface theory for systems with and without a dilatational misfit. With misfit, we report (and rationalize) an interesting difference between systems with a constant diffusivity and those with a variable diffusivity in the matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we report the spontaneous and reversible in vitro self-assembly of a polypeptide fragment derived from the C-terminal domain of Insulin-like Growth Factor Binding Protein (IGFBP-2) into soluble nanotubular structures several micrometres long via a mechanism involving inter-molecular disulfide bonds and exhibiting enhanced fluorescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the growth of nanowires of the charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) with diameters as low as 130 nm and show that such nanowires can show Peierls transitions at low temperatures. The wires of sub-micron length were grown between two prefabricated electrodes (with sub-micron gap) by vapor phase growth from a single source by applying an electric field between the electrodes during the growth process. The nanowires so grown show a charge transfer ratio similar to 0.57, which is close to that seen in bulk crystals. Below the transition the transport is strongly nonlinear and can be interpreted as originating from de-pinning of CDW that forms at the Peierls transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabinomannan-containing glycolipids, relevant to the mycobacterial cell-wall component lipoarabinomannan, were synthesized by chemical methods. The glycolipids were presented with tri- and tetrasaccharide arabinomannans as the sugar portion and a double alkyl chain as the lyophilic portion. Following synthesis, systematic biological and biophysical studies were undertaken in order to identify the effects of the glycolipids during mycobacterium growth. The studies included mycobacterial growth, biofilm formation and motility assays. From the studies, it was observed that the synthetic glycolipid with higher arabinan residues inhibited the mycobacterial growth, lessened the biofilm formation and impaired the motility of mycobacteria. A surface plasmon resonance study involving the immobilized glycan surface and the mycobacterial crude lysates as analytes showed specificities of the interactions. Further, it was found that cell lysates from motile bacteria bound oligosaccharide with higher affinity than non-motile bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile idiopathic arthritis (JIA) is associated with growth disturbances, especially leg length discrepancy (LLD) and knee valgus deformity (KVD). Studies have demonstrated growth plate stimulation with chronic arthritis. In the context of surgical treatment of LLD or KVD of a growing knee, the less invasive procedures, which allow immediate mobilisation, are preferred. Establishment of the skeletal age and the correction potential in the knees of rheumatic children is difficult due to rheumatic changes. In this present work, an analysis of the efficacy, safety and long-term results of temporary epiphyseal arrests performed in Rheumatism Foundation Hospital (Heinola, Finland). The distribution of diagnoses among children (n=71) with JIA and LLD (68 knees) was consistent with the normal oligoarthritis-predominated population of children with JIA. A higher male:female ratio (1:1.7 vs. 1:2.4 in population-based studies (PBS)) and earlier mean onset age (4 vs. 7 years in PBSs) were, however, distinct features in the study population. In most cases the correction was reliable and temporary arrest produced a mean correction of 1mm per month. The time of arrest required, however, varied significantly, probably due to the effect of underlying diseases and medication, and the age of the child. All complications encountered (10%) were minor. The correction achieved persisted in long-term follow-up. KVD (n=112, 177 knees) was associated with a high proportion of polyarthritic disease subtype (45% vs. 12-31% in PBSs), and the male:female distribution was grossly female-dominated (1:4.9 vs. 1:2.4 in PBSs). The early mean onset age (3 vs. 7 years in PBSs) was also notable in this cohort. Successful correction was achieved in 2/3 cases and the mean angular correction was 0.7 degrees per month. The required time of arrest, however, varied considerably. In 13% of knees the paucity of follow-up visits resulted in over-correction to varus. The complication rate (3%) in the knees operated for KVD was considerably lower compared to ten per cent in the management of LLD. Most of the complications related to epiphyseal stapling were reversible. However, the risk of premature closure of growth plates does exist. The number of over-corrections was notably high, with 13% knees turning to varus. The correction achieved persisted in long-term follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though it has been established that ZnO tetrapods can be synthesized by heating Zn in air, it is advantageous to grow tetrapods with legs of different morphologies with different lengths. Here, we report the large scale synthesis of ZnO tetrapods by heating Zn in air ambient. The parameters that control the diameter, length, and morphology of tetrapods are identified. It is shown that the morphology and dimensions of the tetrapods depend not only on the vaporization temperature but also on the temperature gradient of the furnace. The controlled synthesis procedure and the key parameters that influence the morphology are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of human promonocytic leukaemic U937 cells was found arrested within 24 h upon exposure to interferon gamma (IFN-gamma). Removal of the interferon did not result in the resumption of growth, as is evident from the absence of doubling of viable cell count and(3)H-thymidine incorporation. 5-Bromo-2'-deoxyuridine-based flow cytometric analysis of the growth-arrested cells, 24 h subsequent to the removal of IFN-gamma, showed absence of DNA synthesis, confirming the irreversible nature of the growth inhibition. Propidium iodide-based flow cytometric analysis of the growth-arrested cells showed a distribution which is typical of a growth inhibition without resulting in the accumulation of cells in any specific phase of the cell cycle. These results indicated that IFN-gamma arrested growth of U937 cells in an irreversible and cell cycle phase-independent manner. These observations were in contrast to our earlier report on the reversible and cell cycle phase-specific growth inhibition of human amniotic (fetal epithelial) WISH cells by the interferon. Copyright 1999 Academic Press.