911 resultados para Grid connected PV system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green energy targets for coming decades advocates high penetration of wind energy in main energy matrix which also pose incendiary threat to stability and reliability of modern electric grid if their dynamic performance aspects are not assessed beforehand. Considering increasing interest in dynamic performance along with ancillary service assessment related to frequency regulation, development of suitable generic modeling has gained high priority. This paper presents modeling of type 4 full converter wind turbine generator system suitable for frequency regulation focusing on active power control. Complete model is a modification of WECC generic model with additional aerodynamic and pitch control model. Descriptions of individual sub models are presented and performance results are compared manufacturer specific GE type 4 WTG generic model by means of simulations in the MATLAB ® Power System Block set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a robust model and its simulation to investigate the performance of an AC propulsion system in a rail vehicle for directly returning the regenerative braking power to the feeder substation of an AC traction network. This direct returning method can be an efficient approach for energy recovery if the regenerative braking is reliably applied. However, it is shown that this method can cause undesired voltage fluctuations if the regenerative braking regime or braking location of the rail vehicle change. The load torque on the traction motor (TM) is precisely modelled when pure electrical braking is applied. Different states of the direct torque controlled inverter are modelled when the TM regenerates. A circuit model for the utility grid, load impedances and the traction network is developed to evaluate the network receptivity against the regenerated power. The dynamics of the electromagnetic torque and the fluctuations of the DC-link voltage are investigated for two operational conditions: changes on the regenerative braking regime and changes on the rail vehicle braking location. The results justify how the DC-link voltage dramatically fluctuates with variations of the rail vehicle's operation conditions, whereas the electromagnetic torque is maintained on optimum rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today’s power system network is more complex with enhanced responsibility to maintain reliable, stable and quality supply of power at transmission and distribution level. Maintaining grid balance is a bigger issue, in case of any unexpected generation shortage or grid disturbance or any participation of an intermittent nature of renewable energy sources like wind and solar power in the energy mix. In order to compensate such imbalance and improve reliability, and stability of power system, an energy storage system (ESS) can be considered as a vital solution. Also ESS can be used to mitigate associated issues of renewable energy sources while integration into the power system network. Thus ESS supports to get a reduction in greenhouse gas (GHG) emissions by means of integrating more renewable energy sources to the grid effectively. There are various types of Energy Storage (ES) technologies which are being used in power systems network for large scale (MW) to small scale (KW) level. Based on the type and characteristics, each storage technology is suitable for a particular role of applications. This paper presents an extensive review study on various types of ES technologies in characteristics and applications point of view. It also demonstrates various applications of ESS in detail. Finally, with the aid of ES-selectTM tool software, a feasibility analysis has been carried out to identify a suitable ES technology for appropriate applications at different grid locations and also helps to develop a smart hybrid storage system for grid applications in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy crisis is one of the major problems facing the progress of human society. There are several energy-efficient technologies that can be applied to save energy and make a sustainable environment. Passive air cooling of earth pipe cooling technology is one of them to reduce the energy consumption for hot and humid subtropical climates. The technology works with a long buried pipe with one end for intake air and the other end for providing air cooled by soil to the desired space such as residential, agricultural, or industrial buildings. It can be an attractive economical alternative to conventional cooling since there are no compressors or any customary mechanical unit. This chapter reports the performance of a vertical earth pipe cooling system for a hot and humid subtropical climatic zone in Queensland, Australia. A series of buried pipes were installed in vertical arrangement in order to increase earth pipe cooling performance. To measure the performance of the system, a numerical model was developed and simulated using the CFD software Fluent in ANSYS 15.0. Data were collected from two modeled rooms built from two shipping containers and installed at the Sustainable Precinct at Central Queensland University, Rockhampton, Australia. The impact of air temperature and velocity on room cooling performance has also been assessed. A temperature reduction of 1.82 °C was observed in the room connected to the vertical earth pipe cooling system, which will save the energy cost for thermal cooling in buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly un-balance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chapter presents a dynamical model and power conversion technology of electric vehicles (EVs) used in smart grids. The efficient power conversion of EVs in smart grids depends on the operation of bi-directional converters as these EVs need to be either charged or discharged. In this chapter, the mathematical model of a bi-directional converter used in EVs is developed and a nonlinear controller is designed to facilitate the power conversion in the smart grid environments. Since the power conversion of EVs in smart grids requires the communication, a nonlinear partial feedback linearising distributed controller based on the communication with different EVs is proposed to ensure high power quality and system stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 IEEE.This paper presents an H« controller synthesised based on linear matrix inequalities (LMI) for a current source converter based superconducting magnetic energy systems (SMESs) connected to a node of power systems where the regulation of grid current has considered as a control objective. To facilitate the control design, the system is represented in terms of state space realization with uncertainties. The control design involves selecting proper weighting functions and performing LMI-synthesis. The controller order is reduced by Henkel-norm method. Simulations are carried out to evaluate the characteristics of the controller under parametric uncertainties. It is found out that the proposed controller is inherently stable, possesses significantly small tracking error, and preserves robust performance for the SMES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy system integration can lead to adverse effects on modern electric grid so it is imperative toassess their dynamic performance before actual plant startup. Transmission system operators all over theworld stress the need for a proper wind turbine generator model for dynamic performance as well asancillary service assessments. Due to the bulk power system assessment requirements, developmentof suitable generic modeling has gained high priority. Generic modeling of type 4 full converter wind turbinegenerator system for application in frequency ancillary service investigations under varying windspeed and varying reference power has been presented in this study. Prevalent generic model, manufacturerspecific proprietary generic model along with detailed wind turbine model with synchronous generatoris also provided to highlight various modelling framework difference. Descriptions of individualsub models of proposed generic model are presented in detail and performance results are comparedand validated with GE’s proprietary generic model and detailed WTG model by means of simulationsin the MATLAB Power System Block set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a load sharing method applied in a distributed micro grid system. The goal of this method is to balance the state-of-charge (SoC) of each parallel connected battery and make it possible to detect the average SoC of the system by measuring bus voltage for all connected modules. In this method the reference voltage for each battery converter is adjusted by adding a proportional SoC factor. Under such setting the battery with a higher SoC will output more power, whereas the one with lower SoC gives out less. Therefore the higher SoC battery will use its energy faster than the lower ones, and eventually the SoC and output power of each battery will converge. And because the reference voltage is related to SoC status, the information of the average SoC in this system could be shared for all modules by measuring bus voltage. The SoC balancing speed is related to the SoC droop factors. This SoC-based load sharing control system is analyzed in feasibility and stability. Simulations in MATLAB/Simulink are presented, which indicate that this control scheme could balance the battery SoCs as predicted. The observation of SoC sharing through bus voltage was validated in both software simulation and hardware experiments. It could be of use to non-communicated distributed power system in load shedding and power planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency, time and places of charging have large impact on the Quality of Experience (QoE) of EV drivers. It is critical to design effective EV charging scheduling system to improve the QoE of EV drivers. In order to improve EV charging QoE and utilization of CSs, we develop an innovative travel plan aware charging scheduling scheme for moving EVs to be charged at Charging Stations (CS). In the design of the proposed charging scheduling scheme for moving EVs, the travel routes of EVs and the utility of CSs are taken into consideration. The assignment of EVs to CSs is modeled as a two-sided many-to-one matching game with the objective of maximizing the system utility which reflects the satisfactory degrees of EVs and the profits of CSs. A Stable Matching Algorithm (SMA) is proposed to seek stable matching between charging EVs and CSs. Furthermore, an improved Learning based On-LiNe scheduling Algorithm (LONA) is proposed to be executed by each CS in a distributed manner. The performance gain of the average system utility by the SMA is up to 38.2% comparing to the Random Charging Scheduling (RCS) algorithm, and 4.67% comparing to Only utility of Electric Vehicle Concerned (OEVC) scheme. The effectiveness of the proposed SMA and LONA is also demonstrated by simulations in terms of the satisfactory ratio of charging EVs and the the convergence speed of iteration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the implementation of new technologies in network industries through the development of a suitable regulatory scheme. The analysis focuses on Smart Grid (SG) technologies which, among others benefits, could save operational costs and reduce the need for further conventional investments in the grid. In spite of the benefits that may result from their implementation, the adoption of SGs by network operators can be hampered by the uncertainties surrounding actual performances. A decision model has been developed to assess the firms' incentives to invest in "smart" technologies under different regulatory schemes. The model also enables testing the impact of uncertainties on the reduction of operational costs, and of conventional investments. Under certain circumstances, it may be justified to support the development and early deployment of emerging innovations that have a high potential to ameliorate the efficiency of the electricity system, but whose adoption faces many uncertainties.