985 resultados para Grassland biomass estimation
Resumo:
Accelerated electrothermal aging tests were conducted at a constant temperature of 60 degrees C and at different stress levels of 6 kV/mm, 7 kV/mm and 8 kV/mm on unfilled epoxy and epoxy filled with 5 wt% of nano alumina. The leakage current through the samples were continuously monitored and the variation in tan delta values with aging duration was monitored to predict the impending failure and the time to failure of the samples. It is observed that the time to failure of epoxy alumina nanocomposite samples is significantly higher as compared to the unfilled epoxy. Data from the experiments has been analyzed graphically by plotting the Weibull probability and theoretically by the linear least square regression analysis. The characteristic life obtained from the least square regression analysis has been used to plot the inverse power law curve. From the inverse power law curve, the life of the epoxy insulation with and without nanofiller loading at a stress level of 3 kV/mm, i.e. within the midrange of the design stress level of rotating machine insulation, has been obtained by extrapolation. It is observed that the life of epoxy alumina nanocomposite of 5 wt% filler loading is nine times higher than that of the unfilled epoxy.
Resumo:
In this research work, we introduce a novel approach for phase estimation from noisy reconstructed interference fields in digital holographic interferometry using an unscented Kalman filter. Unlike conventionally used unwrapping algorithms and piecewise polynomial approximation approaches, this paper proposes, for the first time to the best of our knowledge, a signal tracking approach for phase estimation. The state space model derived in this approach is inspired from the Taylor series expansion of the phase function as the process model, and polar to Cartesian conversion as the measurement model. We have characterized our approach by simulations and validated the performance on experimental data (holograms) recorded under various practical conditions. Our study reveals that the proposed approach, when compared with various phase estimation methods available in the literature, outperforms at lower SNR values (i.e., especially in the range 0-20 dB). It is demonstrated with experimental data as well that the proposed approach is a better choice for estimating rapidly varying phase with high dynamic range and noise. (C) 2014 Optical Society of America
Resumo:
It is well known that the impulse response of a wide-band wireless channel is approximately sparse, in the sense that it has a small number of significant components relative to the channel delay spread. In this paper, we consider the estimation of the unknown channel coefficients and its support in OFDM systems using a sparse Bayesian learning (SBL) framework for exact inference. In a quasi-static, block-fading scenario, we employ the SBL algorithm for channel estimation and propose a joint SBL (J-SBL) and a low-complexity recursive J-SBL algorithm for joint channel estimation and data detection. In a time-varying scenario, we use a first-order autoregressive model for the wireless channel and propose a novel, recursive, low-complexity Kalman filtering-based SBL (KSBL) algorithm for channel estimation. We generalize the KSBL algorithm to obtain the recursive joint KSBL algorithm that performs joint channel estimation and data detection. Our algorithms can efficiently recover a group of approximately sparse vectors even when the measurement matrix is partially unknown due to the presence of unknown data symbols. Moreover, the algorithms can fully exploit the correlation structure in the multiple measurements. Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of the mean-square error and bit error rate performance.
Resumo:
A method to estimate the Hall-Petch coefficient k for yield strength and flow stress of steels through nanoindentation experiments is proposed. While determination of k(f) for flow stress is on the basis of grain boundary strengthening evaluated by sharp indentation, k(y) for yield strength was computed with pop-in data from spherical indentations. Good agreement between estimated and literature data, obtained from the tensile tests, validates the proposed methodology. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.
Resumo:
This paper proposes an automatic acoustic-phonetic method for estimating voice-onset time of stops. This method requires neither transcription of the utterance nor training of a classifier. It makes use of the plosion index for the automatic detection of burst onsets of stops. Having detected the burst onset, the onset of the voicing following the burst is detected using the epochal information and a temporal measure named the maximum weighted inner product. For validation, several experiments are carried out on the entire TIMIT database and two of the CMU Arctic corpora. The performance of the proposed method compares well with three state-of-the-art techniques. (C) 2014 Acoustical Society of America
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H-2 yield, efficiency and syngas energy density. Casuarina wood is used as a fuel, and mixture of oxygen and steam in different proportion and amount is used as a gasifying media. The results are analysed with respect to varying equivalence ratio and steam to biomass ratio (SBR). Elemental mass balance technique is employed to ensure the validity of results. First and second law thermodynamic analysis is used towards time evaluation of energy and exergy analysis. Different component of energy input and output has been studied carefully to understand the influence of varying SBR on the availability of energy and irreversibility in the system to minimize the losses with change in input parameters for optimum performance. The energy and exergy losses (irreversibility) for oxy-steam gasification system are compared with the results of air gasification, and losses are found to be lower in oxy-steam thermal conversion; which has been argued and reasoned due to the presence of N-2 in the air-gasification. The maximum exergy efficiency of 85% with energy efficiency of 82% is achieved at SBR of 0.75 on the molar basis. It has been observed that increase in SBR results in lower exergy and energy efficiency, and it is argued to be due to the high energy input in steam generation and subsequent losses in the form of physical exergy of steam in the product gas, which alone accounts for over 18% in exergy input and 8.5% in exergy of product gas at SBR of 2.7. Carbon boundary point (CBP), is identified at the SBR of 1.5, and water gas shift (WGS) reaction plays a crucial role in H-2 enrichment after carbon boundary point (CBP) is reached. Effects of SBR and CBP on the H-2/CO ratio is analysed and discussed from the perspective of energy as well as the reaction chemistry. Energy density of syngas and energy efficiency is favoured at lower SBR but higher SBR favours H-2 rich gas at the expense of efficiency. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Adapting the power of secondary users (SUs) while adhering to constraints on the interference caused to primary receivers (PRxs) is a critical issue in underlay cognitive radio (CR). This adaptation is driven by the interference and transmit power constraints imposed on the secondary transmitter (STx). Its performance also depends on the quality of channel state information (CSI) available at the STx of the links from the STx to the secondary receiver and to the PRxs. For a system in which an STx is subject to an average interference constraint or an interference outage probability constraint at each of the PRxs, we derive novel symbol error probability (SEP)-optimal, practically motivated binary transmit power control policies. As a reference, we also present the corresponding SEP-optimal continuous transmit power control policies for one PRx. We then analyze the robustness of the optimal policies when the STx knows noisy channel estimates of the links between the SU and the PRxs. Altogether, our work develops a holistic understanding of the critical role played by different transmit and interference constraints in driving power control in underlay CR and the impact of CSI on its performance.
Resumo:
This paper proposes an optical flow algorithm by adapting Approximate Nearest Neighbor Fields (ANNF) to obtain a pixel level optical flow between image sequence. Patch similarity based coherency is performed to refine the ANNF maps. Further improvement in mapping between the two images are obtained by fusing bidirectional ANNF maps between pair of images. Thus a highly accurate pixel level flow is obtained between the pair of images. Using pyramidal cost optimization, the pixel level optical flow is further optimized to a sub-pixel level. The proposed approach is evaluated on the middlebury dataset and the performance obtained is comparable with the state of the art approaches. Furthermore, the proposed approach can be used to compute large displacement optical flow as evaluated using MPI Sintel dataset.
Resumo:
Electromagnetic Articulography (EMA) technique is used to record the kinematics of different articulators while one speaks. EMA data often contains missing segments due to sensor failure. In this work, we propose a maximum a-posteriori (MAP) estimation with continuity constraint to recover the missing samples in the articulatory trajectories recorded using EMA. In this approach, we combine the benefits of statistical MAP estimation as well as the temporal continuity of the articulatory trajectories. Experiments on articulatory corpus using different missing segment durations show that the proposed continuity constraint results in a 30% reduction in average root mean squared error in estimation over statistical estimation of missing segments without any continuity constraint.
Resumo:
Materials with widely varying molecular topologies and exhibiting liquid crystalline properties have attracted considerable attention in recent years. C-13 NMR spectroscopy is a convenient method for studying such novel systems. In this approach the assignment of the spectrum is the first step which is a non-trivial problem. Towards this end, we propose here a method that enables the carbon skeleton of the different sub-units of the molecule to be traced unambiguously. The proposed method uses a heteronuclear correlation experiment to detect pairs of nearby carbons with attached protons in the liquid crystalline core through correlation of the carbon chemical shifts to the double-quantum coherences of protons generated through the dipolar coupling between them. Supplemented by experiments that identify non-protonated carbons, the method leads to a complete assignment of the spectrum. We initially apply this method for assigning the C-13 spectrum of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl oriented in the magnetic field. We then utilize the method to assign the aromatic carbon signals of a thiophene based liquid crystal thereby enabling the local order-parameters of the molecule to be estimated and the mutual orientation of the different sub-units to be obtained.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
Accuracy in tree woody growth estimates is important to global carbon budget estimation and climate-change science. Tree growth in permanent sampling plots (PSPs) is commonly estimated by measuring stem diameter changes, but this method is susceptible to bias resulting from water-induced reversible stem shrinkage. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. We propose and test a novel approach for estimating and correcting this bias at the community level. In a 50-ha PSP from a seasonally dry tropical forest in southern India, where tape measurements have been taken every four years from 1988 to 2012, for nine trees we estimated bias due to reversible stem shrinkage as the difference between woody growth measured using tree rings and that estimated from tape. We tested if the bias estimated from these trees could be used as a proxy to correct bias in tape-based growth estimates at the PSP scale. We observed significant shrinkage-related bias in the growth estimates of the nine trees in some censuses. This bias was strongly linearly related to tape-based growth estimates at the level of the PSP, and could be used as a proxy. After bias was corrected, the temporal variance in growth rates of the PSP decreased, while the effect of exceptionally dry or wet periods was retained, indicating that at least a part of the temporal variability arose from reversible shrinkage-related bias. We also suggest that the efficacy of the bias correction could be improved by measuring the proxy on trees that belong to different size classes and census timing, but not necessarily to different species. Our approach allows for reanalysis - and possible reinterpretation of temporal trends in tree growth, above ground biomass change, or carbon fluxes in forests, and their relationships with resource availability in the context of climate change. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)