911 resultados para Graphs and Digraphs
Resumo:
Postprint
Resumo:
Examining a team’s performance from a physical point of view their momentum might indicate unexpected turning points in defeat or success. Physicists describe this value as to require some effort to be started, but also that it is relatively easy to keep it going once a sufficient level is reached (Reed and Hughes, 2006). Unlike football, rugby, handball and many more sports, a regular volleyball match is not limited by time but by points that need to be gathered. Every minute more than one point is won by either one team or the other. That means a series of successive points enlarges the gap between the teams making it more and more difficult to catch up with the leading one. This concept of gathering momentum, or the reverse in a performance, can give the coaches, athletes and sports scientists further insights into winning and losing performances. Momentum investigations also contain dependencies between performances or questions if future performances are reliant upon past streaks. Squash and volleyball share the characteristic of being played up to a certain amount of points. Squash was examined according to the momentum of players by Hughes et al. (2006). The initial aim was to expand normative profiles of elite squash players using momentum graphs of winners and errors to explore ‘turning points’ in a performance. Dynamic systems theory has enabled the definition of perturbations in sports exhibiting rhythms (Hughes et al., 2000; McGarry et al., 2002; Murray et al., 2008), and how players and teams cause these disruptions of rhythm can inform on the way they play, these techniques also contribute to profiling methods. Together with the analysis of one’s own performance it is essential to have an understanding of your oppositions’ tactical strengths and weaknesses. By modelling the oppositions’ performance it is possible to predict certain outcomes and patterns, and therefore intervene or change tactics before the critical incident occurs. The modelling of competitive sport is an informative analytic technique as it directs the attention of the modeller to the critical aspects of data that delineate successful performance (McGarry & Franks, 1996). Using tactical performance profiles to pull out and visualise these critical aspects of performance, players can build justified and sophisticated tactical plans. The area is discussed and reviewed, critically appraising the research completed in this element of Performance Analysis.
Resumo:
Research analysis of electrocardiograms (ECG) today is carried out mostly using time depending signals of different leads shown in the graphs. Definition of ECG parameters is performed by qualified personnel, and requiring particular skills. To support decoding the cardiac depolarization phase of ECG there are methods to analyze space-time convolution charts in three dimensions where the heartbeat is described by the trajectory of its electrical vector. Based on this, it can be assumed that all available options of the classical ECG analysis of this time segment can be obtained using this technique. Investigated ECG visualization techniques in three dimensions combined with quantitative methods giving additional features of cardiac depolarization and allow a better exploitation of the information content of the given ECG signals.
Resumo:
Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.
Resumo:
"UILU-ENG 78 1739."
Resumo:
"UILU-ENG 77 1715."
Resumo:
Vita.
Resumo:
"This project is funded in part by NASA grant NSG 1471."
Resumo:
Bibliography: p. 16.
Resumo:
Extra t.p. with thesis statement inserted.
Resumo:
Includes bibliographical references.
Resumo:
"This research was performed under an agreement between the U.S. Weather Bureau and the U.S. Atomic Energy Commission."
Resumo:
Fifth draft, January 1950.
Resumo:
"US GeoData"--Cover.
Resumo:
Mode of access: Internet.