960 resultados para Grade 9


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Barrett’s esophagus (BE) is a common premalignant lesion for which surveillance is recommended. This strategy is limited by considerable variations in clinical practice. We conducted an international, multidisciplinary, systematic search and evidence-based review of BE and provided consensus recommendations for clinical use in patients with nondysplastic, indefinite, and low-grade dysplasia (LGD). METHODS: We defined the scope, proposed statements, and searched electronic databases, yielding 20,558 publications that were screened, selected online, and formed the evidence base. We used a Delphi consensus process, with an 80% agreement threshold, using GRADE (Grading of Recommendations Assessment, Development and Evaluation) to categorize the quality of evidence and strength of recommendations. RESULTS: In total, 80% of respondents agreed with 55 of 127 statements in the final voting rounds. Population endoscopic screening is not recommended and screening should target only very high-risk cases of males aged over 60 years with chronic uncontrolled reflux. A new international definition of BE was agreed upon. For any degree of dysplasia, at least two specialist gastrointestinal (GI) pathologists are required. Risk factors for cancer include male gender, length of BE, and central obesity. Endoscopic resection should be used for visible, nodular areas. Surveillance is not recommended for <5 years of life expectancy. Management strategies for indefinite dysplasia (IND) and LGD were identified, including a de-escalation strategy for lower-risk patients and escalation to intervention with follow-up for higher-risk patients. CONCLUSIONS: In this uniquely large consensus process in gastroenterology, we made key clinical recommendations for the escalation/de-escalation of BE in clinical practice. We made strong recommendations for the prioritization of future research.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two ionic liquids, 1-ethylpyridinium docusate (IL1) and tri-n-butyl(2-hydroxyethyl)phosphonium docusate (IL2), were designed and synthesized with the explicit intention of imparting a combination of plasticization and antimicrobial efficacy when incorporated into medical grade poly(vinyl chloride)s (PVCs). The glass transition (T-g) of PVC can be reduced by >20 degrees C on addition of 15 wt% IL2. Both IL1 and IL2 leached to varying extents from the base PVC resins rendering the surface of the PVCs hydrophilic. The antimicrobial activity of both ILs is related to the presence and concentration of both cationic and anionic component of the ILs leached from the PVC and inversely proportional to the extent of PVC gelation. Blends of the PVCs with IL1 displayed antibacterial activity against almost all Gram-positive bacteria tested, including coagulase-negative Staphylococci (CoNS) and methicillin-resistant Staphylococcus aureus (MRSA), but not with IL2 at low concentration in contrast to our previous study when high concentrations of IL2 were used. The more hydrophilic IL1 when added to PVC retards biofilm formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.

Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.

Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.