946 resultados para George, Susan: Maailman kauppajärjestö kuriin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake George, New York, is the site of a new discovery of iron-manganese nodules. These nodules occur at a water depth between 21 and 36 m along a stretch of lake extending for about 5 mi north and south of the Narrows, a constricted island-dotted area which separates the north and south Lake George basins. Nodules occur on or within the uppermost 5 cm of a varved glacial clay. Some areas are solidly floored with a carpet of nodules in areas where active currents keep the nodules exposed. The nodules form around nuclei which consist of clay and less commonly of spore capsules, detrital particles, or bark. By their shape we recognize three types of nodules: spherical, discoidal, and lumps. On X-ray examination all nodules show small goethite peaks; in one nodule the manganese mineral birnessite was identified. Manganese and part of the iron appears to be in X-ray amorphous ferromanganese compounds. The Lake George nodules are enriched in iron with respect to marine nodules but are lower in manganese. They have a higher trace element concentration than nodules from other known freshwater lake occurrences, but a lower concentration than marine nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were for the first time investigated in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 µM were found. We suggest that the increased accumulation of fine-grained material with high amounts of reducible metal oxides in combination with the reduced availability of metabolisable organic matter and enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms favours metal oxide reduction over sulphate reduction in these areas. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9x10**3 to 790x10**3 t/yr. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5/mg/m**2/yr (median: 3.8 mg/m**2/yr) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the accumulation of melt water derived iron-rich material on the shelf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vegetation of a small fjord and its adjacent open shore was documented by subaquatic video. The distribution of individual species of macroalgae and the composition of assemblages were compared with gradients of light availability, hydrography, slope inclination, substratum, and exposition to turbulence and ice. The sublittoral fringe is usually abraded by winterly ice floes and devoid of large, perennial algae. Below this zone, the upper sublittoral is dominated by Desmarestia menziesii on steep rock faces, where water movements become irregular, or by Ascoseira mirabilis and Palmaria decipiens on weakly inclined slopes with steady rolling water movements. In the central sublittoral above 15 m, where turbulence is still active, Desmarestia anceps is outcompeting all other species on solid substratum, However, the species is not able to persist on loose material under these conditions. Instead, Himantothallus grandifolius may occur. Deeper, where turbulence usually is negligible, Desmarestia anceps also covers loose material. The change of dominance to Himantothallus grandifolius in the deep sublittoral cannot completely be explained at present. Himantothallus grandifolius also prevails in a mixed assemblage under the influence of grounding icebergs. Most of the smaller algae are opportunists with different degrees of tolerance for turbulence, but some apparently need more stable microhabitats and thus are dependent from continuing suppression of competitive large phaeophytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.