995 resultados para Geophysical observatories


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Radiative Atmospheric Divergence Using ARM Mobile Facility GERB and AMMA Stations (RADAGAST) project we calculate the divergence of radiative flux across the atmosphere by comparing fluxes measured at each end of an atmospheric column above Niamey, in the African Sahel region. The combination of broadband flux measurements from geostationary orbit and the deployment for over 12 months of a comprehensive suite of active and passive instrumentation at the surface eliminates a number of sampling issues that could otherwise affect divergence calculations of this sort. However, one sampling issue that challenges the project is the fact that the surface flux data are essentially measurements made at a point, while the top-of-atmosphere values are taken over a solid angle that corresponds to an area at the surface of some 2500 km2. Variability of cloud cover and aerosol loading in the atmosphere mean that the downwelling fluxes, even when averaged over a day, will not be an exact match to the area-averaged value over that larger area, although we might expect that it is an unbiased estimate thereof. The heterogeneity of the surface, for example, fixed variations in albedo, further means that there is a likely systematic difference in the corresponding upwelling fluxes. In this paper we characterize and quantify this spatial sampling problem. We bound the root-mean-square error in the downwelling fluxes by exploiting a second set of surface flux measurements from a site that was run in parallel with the main deployment. The differences in the two sets of fluxes lead us to an upper bound to the sampling uncertainty, and their correlation leads to another which is probably optimistic as it requires certain other conditions to be met. For the upwelling fluxes we use data products from a number of satellite instruments to characterize the relevant heterogeneities and so estimate the systematic effects that arise from the flux measurements having to be taken at a single point. The sampling uncertainties vary with the season, being higher during the monsoon period. We find that the sampling errors for the daily average flux are small for the shortwave irradiance, generally less than 5 W m−2, under relatively clear skies, but these increase to about 10 W m−2 during the monsoon. For the upwelling fluxes, again taking daily averages, systematic errors are of order 10 W m−2 as a result of albedo variability. The uncertainty on the longwave component of the surface radiation budget is smaller than that on the shortwave component, in all conditions, but a bias of 4 W m−2 is calculated to exist in the surface leaving longwave flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an idealized primitive equation model, we investigate how stratospheric conditions alter the development of baroclinic instability in the troposphere. Starting from the lifecycle paradigm of Thorncroft et al., we consider the evolution of baroclinic lifecycles resulting from the addition of a stratospheric jet to the LC1 initial condition. We find that the addition of the stratospheric jet yields a net surface geopotential height anomaly that strongly resembles the Arctic Oscillation. With the additional modification of the tropospheric winds to resemble the high-AO climatology, the surface response is amplified by a factor 10 and, though dominated by the tropospheric changes, shows similar sensitivity to the stratospheric conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations suggest that the mixing ratio of water vapour in the stratosphere has increased by 20–50% between the 1960s and mid-1990s. Here we show that inclusion of such a stratospheric water vapour (SWV) increase in a state-of-the-art climate model modifies the circulation of the extratropical troposphere: the modeled increase in the North Atlantic Oscillation (NAO) index is 40% of the observed increase in NAO index between 1965 and 1995, suggesting that if the SWV trend is real, it explains a significant fraction of the observed NAO trend. Our results imply that SWV changes provide a novel mechanism for communicating the effects of large tropical volcanic eruptions and ENSO events to the extratropical troposphere over timescales of a few years, which provides a mechanism for interannual climate predictability. Finally, we discuss our results in the context of regional climate change associated with changes in methane emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robust responses and links between the tropical energy and water cycles are investigated using multiple datasets and climate models over the period 1979-2006. Atmospheric moisture and net radiative cooling provide powerful constraints upon future changes in precipitation. While moisture amount is robustly linked with surface temperature, the response of atmospheric net radiative cooling, derived from satellite data, is less coherent. Precipitation trends and relationships with surface temperature are highly sensitive to the data product and the time-period considered. Data from the Special Sensor Microwave Imager (SSM/I) produces the strongest trends in precipitation and response to warming of all the datasets considered. The tendency for moist regions to become wetter while dry regions become drier in response to warming is captured by both observations and models. Citation: John, V. O., R. P. Allan, and B. J. Soden (2009), How robust are observed and simulated precipitation responses to tropical ocean warming?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are at least three distinct time scales that are relevant for the evolution of atmospheric convection. These are the time scale of the forcing mechanism, the time scale governing the response to a steady forcing, and the time scale of the response to variations in the forcing. The last of these, tmem, is associated with convective life cycles, which provide an element of memory in the system. A highly simplified model of convection is introduced, which allows for investigation of the character of convection as a function of the three time scales. For short tmem, the convective response is strongly tied to the forcing as in conventional equilibrium parameterization. For long tmem, the convection responds only to the slowly evolving component of forcing, and any fluctuations in the forcing are essentially suppressed. At intermediate tmem, convection becomes less predictable: conventional equilibrium closure breaks down and current levels of convection modify the subsequent response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have argued that the autocorrelation of the winter North Atlantic Oscillation (NAO) index provides evidence of unusually persistent intraseasonal dynamics. We demonstrate that the autocorrelation on intraseasonal time-scales of 10–30 days is sensitive to the presence of interannual variability, part of which arises from the sampling of intraseasonal variability and the remainder of which we consider to be “externally forced”. Modelling the intraseasonal variability of the NAO as a red noise process we estimate, for winter, ~70% of the interannual variability is externally forced, whereas for summer sampling accounts for almost all of the interannual variability. Correcting for the externally forced interannual variability has a major impact on the autocorrelation function for winter. When externally forced interannual variability is taken into account the intrinsic persistence of the NAO is very similar in summer and winter (~5 days). This finding has implications for understanding the dynamics of the NAO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Atlantic meridional overturning circulation (AMOC) is an important component of the climate system. Models indicate that the AMOC can be perturbed by freshwater forcing in the North Atlantic. Using an ocean-atmosphere general circulation model, we investigate the dependence of such a perturbation of the AMOC, and the consequent climate change, on the region of freshwater forcing. A wide range of changes in AMOC strength is found after 100 years of freshwater forcing. The largest changes in AMOC strength occur when the regions of deepwater formation in the model are forced directly, although reductions in deepwater formation in one area may be compensated by enhanced formation elsewhere. North Atlantic average surface air temperatures correlate linearly with the AMOC decline, but warming may occur in localised regions, notably over Greenland and where deepwater formation is enhanced. This brings into question the representativeness of temperature changes inferred from Greenland ice-core records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The greenhouse effect of cloud may be quantified as the difference between outgoing longwave radiation (OLR) and its clear-sky component (OLRc). Clear-sky measurements from satellite preferentially sample drier, more stable conditions relative to the monthly-mean state. The resulting observational bias is evident when OLRc is stratified by vertical motion; differences to climate model OLRc of 15 Wm−2 occur over warm regions of strong ascent. Using data from the ECMWF 40-year reanalysis, an estimate of cloud longwave radiative effect is made which is directly comparable with standard climate model diagnostics. The impact of this methodology on the cancellation of cloud longwave and shortwave radiative forcing in the tropics is estimated.