971 resultados para Geometric Function Theory
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.
Resumo:
This article uses data for Nepal to test contemporary hypotheses about the remitting behaviour and associated motives of rural-to-urban migrants and to consider the likely impact of such remittances on rural development. Possibilities for inheritance, degree of family attachment, likelihood of eventual return to place of origin and family investment in the education of the migrants are found to be significant influences on levels of remittances by Nepalese migrants. However, in Nepal, remittances do not seem to result in long-term capital investment in rural areas and so may not promote long-term development of these areas.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A heterogeneous modified vacancy solution model of adsorption developed is evaluated. The new model considers the adsorption process through a mass-action law and is thermodynamically consistent, while maintaining the simplicity in calculation of multicomponent adsorption equilibria, as in the original vacancy solution theory. It incorporates the adsorbent heterogeneity through a pore-width-related potential energy, represented by Steele's 10-4-3 potential expression. The experimental data of various hydrocarbons, CO2 and SO2 on four different activated carbons - Ajax, Norit, Nuxit, and BPL - at multiple temperatures over a wide range of pressures were studied by the heterogeneous modified VST model to obtain the isotherm parameters and micropore-size distribution of carbons. The model successfully correlates the single-component adsorption equilibrium data for all compounds studied on various carbons. The fitting results for the vacancy occupancy parameter are consistent with the pressure change on different carbons, and the effect of pore heterogeneity is important in adsorption at elevated pressure. It predicts binary adsorption equilibria better than the IAST scheme, reflecting the significance of molecular size nonideality.
Resumo:
Density functional theory for adsorption in carbons is adapted here to incorporate a random distribution of pore wall thickness in the solid, and it is shown that the mean pore wall thickness is intimately related to the pore size distribution characteristics. For typical carbons the pore walls are estimated to comprise only about two graphene layers, and application of the modified density functional theory approach shows that the commonly used assumption of infinitely thick walls can severely affect the results for adsorption in small pores under both supercritical and subcritical conditions. Under supercritical conditions the Henry's law coefficient is overpredicted by as much as a factor of 2, while under subcritical conditions pore wall heterogeneity appears to modify transitions in small pores into a sequence of smaller ones corresponding to pores with different wall thicknesses. The results suggest the need to improve current pore size distrubution analysis methods to allow for pore wall heterogeneity. The density functional theory is further extended here to allow for interpore adsorbate interactions, and it appears that these interaction are negligible for small molecules such as nitrogen but significant for more strongly interacting heavier molecules such as butane, for which the traditional independent pore model may not be adequate.
Resumo:
Surface diffusion of strongly adsorbing hydrocarbon vapours on activated carbon was measured by using a constant molar flow method (D.D. Do, Dynamics of a semi-batch adsorber with constant molar supply rate: a method for studying adsorption rate of pure gas, Chem. Eng. Sci. 50 (1995) 549), where pure adsorbate is introduced into a semi-batch adsorber at a constant molar flow rate. The surface diffusivity was determined from the analysis of pressure response versus time, using a linear mathematical model developed earlier. To apply the linear theory over the non-linear range of the adsorption isotherm, we implement a differential increment method on the system which is initially equilibrated with some pre-determined loading. By conducting the experiments at different initial loadings, the surface diffusivity can be extracted as a function of loading. Propane, n-butane, n-hexane, benzene, and ethanol were used as diffusing adsorbate on a commercial activated carbon. It is found that the surface diffusivity of these strongly adsorbing vapours increases rapidly with loading, and the surface diffusion flux contributes significantly to the total flux and cannot be ignored. The surface diffusivity increases with temperature according to the Arrhenius law, and for the paraffins tested it decreases with the molecular weight of the adsorbate. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A comparative study of carbon gasification with O-2 and CO2 was conducted by using density functional theory calculations. It was found that the activation energy and the number of active sites in carbon gasification reactions are significantly affected by both the capacity and manner of gas chemisorption. O-2 has a strong adsorption capacity and the dissociative chemisorption of O-2 is thermodynamically favorable on either bare carbon surface or even isolated edge sites. As a result, a large number of semiquinone and o-quinone oxygen can be formed indicating a significant increase in the number of active sites. Moreover, the weaker o-quinone C-C bonds can also drive the reaction forward at (ca. 30%) lower activation energy. Epoxy oxygen forms under relatively high O-2 pressure, and it can only increase the number of active sites, not further reduce the activation energy. CO2 has a lower adsorption capacity. Dissociative chemisorption of CO2 can only occur on two consecutive edge sites and o-quinone oxygen formed from CO2 chemisorption is negligible, let alone epoxy oxygen. Therefore, CO2-carbon reaction needs (ca 30%) higher activation energy. Furthermore, the effective active sites are also reduced by the manner Of CO2 chemisorption. A combination of the higher activation energy and the fewer active sites leads to the much lower reaction rate Of CO2-carbon.
Resumo:
This study investigated reasons for the outsourcing of a core HRM function, recruitment. Drawing from transaction costs and institutional theories, it was hypothesised that the pressure to minimise transaction costs and the presence of industry trends towards outsourcing would be positively associated with the outsourcing of recruitment. Survey data were gathered from 1I 7 HR professionals in Australia. Both hypotheses were partially supported. Specifically, the outsourcing of recruitment activities was positively associated with trust in the agency supplying the recruitment service and with the need to reduce internal labour but not fixed costs. With regard to institutional theory, the outsourcing of recruitment was positively associated with mimetic but not coercive forces. The study concludes that although most assumptions about recruitment agency use are expressed in economic terms, in reality, HRM practices are also influenced by forces exerted by the institutional environment in which organisations are located.