998 resultados para Geology--England--Maps
Resumo:
The primary aim of the present study is to acquire a large amount of gravity data, to prepare gravity maps and interpret the data in terms of crustal structure below the Bavali shear zone and adjacent regions of northern Kerala. The gravity modeling is basically a tool to obtain knowledge of the subsurface extension of the exposed geological units and their structural relationship with the surroundings. The study is expected to throw light on the nature of the shear zone, crustal configuration below the high-grade granulite terrain and the tectonics operating during geological times in the region. The Bavali shear is manifested in the gravity profiles by a steep gravity gradient. The gravity models indicate that the Bavali shear coincides with steep plane that separates two contrasting crustal densities extending beyond a depth of 30 km possibly down to Moho, justifying it to be a Mantle fault. It is difficult to construct a generalized model of crustal evolution in terms of its varied manifestations using only the gravity data. However, the data constrains several aspects of crustal evolution and provides insights into some of the major events.
Resumo:
This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing
Resumo:
Department of Marine Geology & Geophysics, Cochin University of Science & Technology
Resumo:
We establish numerically the validity of Huberman-Rudnick scaling relation for Lyapunov exponents during the period doubling route to chaos in one dimensional maps. We extend our studies to the context of a combination map. where the scaling index is found to be different.
Resumo:
The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.
Resumo:
In der Arbeit werden einige Resultate von vergleichenden empirischen Untersuchungen zu unterschiedlichen Konzeptionen eines realitätsbezogenen Mathematikunterrichts, wie sie in England und Deutschland häufig vertreten werden, dargestellt. Bei diesen Untersuchungen werden in verschiedenen Fallstudien, die u.a. auch strukturelle Unterschiede zwischen den Bildungssystemen in England und Deutschland und den zugrundeliegenden Erziehungsphilosophien berücksichtigen, Auswirkungen dieser Konzeptionen auf die Einstellung der Lernenden zum Mathematikunterricht, ihr Bild von Mathematik, ihr Verständnis mathematischer Begriffe und Methoden sowie ihre Fähigkeiten zur Anwendung mathematischer Methoden zum Lösen realer Problemaufgaben untersucht. Die hier dargestellten Erhebungen sind Teil eines längerdauernden Kollaborationsprojekts zwischen den Universitäten Exeter und Kassel.
Resumo:
The chemical composition of sediments and rocks, as well as their distribution at the Martian surface, represent a long term archive of processes, which have formed the planetary surface. A survey of chemical compositions by means of Compositional Data Analysis represents a valuable tool to extract direct evidence for weathering processes and allows to quantify weathering and sedimentation rates. clr-biplot techniques are applied for visualization of chemical relationships across the surface (“chemical maps”). The variability among individual suites of data is further analyzed by means of clr-PCA, in order to extract chemical alteration vectors between fresh rocks and their crusts and for an assessment of different source reservoirs accessible to soil formation. Both techniques are applied to elucidate the influence of remote weathering by combined analysis of several soil forming branches. Vector analysis in the Simplex provides the opportunity to study atmosphere surface interactions, including the role and composition of volcanic gases
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing one or more parameters in their definition. Methods that can be linked in this way are correspondence analysis, unweighted or weighted logratio analysis (the latter also known as "spectral mapping"), nonsymmetric correspondence analysis, principal component analysis (with and without logarithmic transformation of the data) and multidimensional scaling. In this presentation I will show how several of these methods, which are frequently used in compositional data analysis, may be linked through parametrizations such as power transformations, linear transformations and convex linear combinations. Since the methods of interest here all lead to visual maps of data, a "movie" can be made where where the linking parameter is allowed to vary in small steps: the results are recalculated "frame by frame" and one can see the smooth change from one method to another. Several of these "movies" will be shown, giving a deeper insight into the similarities and differences between these methods
Resumo:
Wikiloc es un servicio web gratuito para visualizar y compartir rutas y puntos de interés GPS. Utilizando software libre y la API de Google Maps, Wikiloc hace la función de base de datos personal de localizaciones GPS. Desde cualquier acceso a Internet un usuario de GPS puede cargar sus datos GPS y al momento visualizar la ruta y waypoints con distinta cartografía de fondo, incluidos servidores de mapas externos WMS (Web Map Service) o descargarlo a Google Earth para ver en 3D. Paralelamente se muestra el perfil de altura, distancia, desniveles acumulados y las fotos o comentarios que el usuario quiera añadir