945 resultados para Genome Sequence
Resumo:
Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.
Resumo:
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.
Resumo:
BACKGROUND: The comparison of complete genomes has revealed surprisingly large numbers of conserved non-protein-coding (CNC) DNA regions. However, the biological function of CNC remains elusive. CNC differ in two aspects from conserved protein-coding regions. They are not conserved across phylum boundaries, and they do not contain readily detectable sub-domains. Here we characterize the persistence length and time of CNC and conserved protein-coding regions in the vertebrate and insect lineages. RESULTS: The persistence length is the length of a genome region over which a certain level of sequence identity is consistently maintained. The persistence time is the evolutionary period during which a conserved region evolves under the same selective constraints.Our main findings are: (i) Insect genomes contain 1.60 times less conserved information than vertebrates; (ii) Vertebrate CNC have a higher persistence length than conserved coding regions or insect CNC; (iii) CNC have shorter persistence times as compared to conserved coding regions in both lineages. CONCLUSION: Higher persistence length of vertebrate CNC indicates that the conserved information in vertebrates and insects is organized in functional elements of different lengths. These findings might be related to the higher morphological complexity of vertebrates and give clues about the structure of active CNC elements.Shorter persistence time might explain the previously puzzling observations of highly conserved CNC within each phylum, and of a lack of conservation between phyla. It suggests that CNC divergence might be a key factor in vertebrate evolution. Further evolutionary studies will help to relate individual CNC to specific developmental processes.
Resumo:
Differential display technique was applied in order to identify transcripts which are present in axenic amastigotes but not in promastigotes of the Leishmania panamensis parasites. One of them was cloned and the sequence reveals an open reading frame of 364 amino acids (aprox. 40 kDa). The deduced protein is homologous to the serine/threonine protein kinases and specially to the mitogen activates protein kinases from eukaryotic species. Southern blot analysis suggest that this transcript, named lpmkh, is present in the genome of the parasite as a single copy gene. These results could imply that lpmkh could be involved in the differentiation process or the preservation of amastigotes in axenic conditions.
Resumo:
Mammalian genomes contain highly conserved sequences that are not functionally transcribed. These sequences are single copy and comprise approximately 1-2% of the human genome. Evolutionary analysis strongly supports their functional conservation, although their potentially diverse, functional attributes remain unknown. It is likely that genomic variation in conserved non-genic sequences is associated with phenotypic variability and human disorders. So how might their function and contribution to human disorders be examined?
Resumo:
With the advent of High performance computing, it is now possible to achieve orders of magnitude performance and computation e ciency gains over conventional computer architectures. This thesis explores the potential of using high performance computing to accelerate whole genome alignment. A parallel technique is applied to an algorithm for whole genome alignment, this technique is explained and some experiments were carried out to test it. This technique is based in a fair usage of the available resource to execute genome alignment and how this can be used in HPC clusters. This work is a rst approximation to whole genome alignment and it shows the advantages of parallelism and some of the drawbacks that our technique has. This work describes the resource limitations of current WGA applications when dealing with large quantities of sequences. It proposes a parallel heuristic to distribute the load and to assure that alignment quality is mantained.
Resumo:
Desde el inicio del proyecto del genoma humano y su éxito en el año 2001 se han secuenciado genomas de multitud de especies. La mejora en las tecnologías de secuenciación ha generado volúmenes de datos con un crecimiento exponencial. El proyecto Análisis bioinformáticos sobre la tecnología Hadoop abarca la computación paralela de datos biológicos como son las secuencias de ADN. El estudio ha sido encauzado por la naturaleza del problema a resolver. El alineamiento de secuencias genéticas con el paradigma MapReduce.
Design of a Control Slide for Cyanoacrylate Polymerization : Application to the CA-Bluestar Sequence
Resumo:
Casework expercience has shown that, in some cases, long exposures of surfaces subjected to cyanoacrylate (CA) fuming had detrimental effects on the subsequent application of Bluestar. This study aimed to develop a control mechanism to monitor the amount of CA deposited prior to the subsequent treatment. A control slide bearing spots of sodium hydroxide (NaOH) of known concentrations and volume was designed and validated against both scanning electron microscopy (SEM) observations and latent print examiners' assessments of the quality of the developed marks. The control slide allows one to define three levels of development that were used to monitor the Bluestar reaction on depleting footwear marks left in diluted blood. The appropriate conditions for a successful application of both CA and Bluestar were determined.
Resumo:
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.
Resumo:
Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
The major mood disorders, which include bipolar disorder and major depressive disorder (MDD), are considered heritable traits, although previous genetic association studies have had limited success in robustly identifying risk loci. We performed a meta-analysis of five case-control cohorts for major mood disorder, including over 13,600 individuals genotyped on high-density SNP arrays. We identified SNPs at 3p21.1 associated with major mood disorders (rs2251219, P = 3.63 x 10(-8); odds ratio = 0.87; 95% confidence interval, 0.83-0.92), with supportive evidence for association observed in two out of three independent replication cohorts. These results provide an example of a shared genetic susceptibility locus for bipolar disorder and MDD.
Resumo:
The large spatial inhomogeneity in transmit B, field (B-1(+)) observable in human MR images at hi h static magnetic fields (B-0) severely impairs image quality. To overcome this effect in brain T-1-weighted images the, MPRAGE sequence was modified to generate two different images at different inversion times MP2RAGE By combining the two images in a novel fashion, it was possible to create T-1-weigthed images where the result image was free of proton density contrast, T-2* contrast, reception bias field, and, to first order transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B-1(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T-1-weighted images, acquired within 12 min, high-resolution 3D T-1 maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T-1 maps were validated in phantom experiments. In humans, the T, values obtained at 7 T were 1.15 +/- 0.06 s for white matter (WM) and 1.92 +/- 0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min the T-1 values obtained (0.81 +/- 0.03 S for WM and 1.35 +/- 0.05 for GM) were once again found to be in very good agreement with values in the literature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Introduction Lesion detection in multiple sclerosis (MS) is an essential part of its clinical diagnosis. In addition, radiological characterisation of MS lesions is an important research field that aims at distinguishing different MS types, monitoring drug response and prognosis. To date, various MR protocols have been proposed to obtain optimal lesion contrast for early and comprehensive diagnosis of the MS disease. In this study, we compare the sensitivity of five different MR contrasts for lesion detection: (i) the DIR sequence (Double Inversion Recovery, [4]), (ii) the Dark-fluid SPACE acquisition schemes, a 3D variant of a 2D FLAIR sequence [1], (iii) the MP2RAGE [2], an MP-RAGE variant that provides homogeneous T1 contrast and quantitative T1-values, and the sequences currently used for clinical MS diagnosis (2D FLAIR, MP-RAGE). Furthermore, we investigate the T1 relaxation times of cortical and sub-cortical regions in the brain hemispheres and the cerebellum at 3T. Methods 10 early-stage female MS patients (age: 31.64.7y; disease duration: 3.81.9y; disability score, EDSS: 1.80.4) and 10 healthy controls (age and gender-matched: 31.25.8y) were included in the study after obtaining informed written consent according to the local ethic protocol. All experiments were performed at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil [5]. The imaging protocol included the following sequences, (all except for axial FLAIR 2D with 1x1x1.2 mm3 voxel and 256x256x160 matrix): DIR (TI1/TI2/TR XX/3652/10000 ms, iPAT=2, TA 12:02 min), MP-RAGE (TI/TR 900/2300 ms, iPAT=3, TA 3:47 min); MP2RAGE (TI1/TI2/TR 700/2500/5000 ms, iPAT=3, TA 8:22 min, cf. [2]); 3D FLAIR SPACE (only for patient 4-6, TI/TR 1800/5000 ms, iPAT=2, TA=5;52 min, cf. [1]); Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix, TI/TR 2500/9000 ms, iPAT=2, TA 4:05 min). Lesions were identified by two experienced neurologist and radiologist, manually contoured and assigned to regional locations (s. table 1). Regional lesion masks (RLM) from each contrast were compared for number and volumes of lesions. In addition, RLM were merged in a single "master" mask, which represented the sum of the lesions of all contrasts. T1 values were derived for each location from this mask for patients 5-10 (3D FLAIR contrast was missing for patient 1-4). Results & Discussion The DIR sequence appears the most sensitive for total lesions count, followed by the MP2RAGE (table 1). The 3D FLAIR SPACE sequence turns out to be more sensitive than the 2D FLAIR, presumably due to reduced partial volume effects. Looking for sub-cortical hemispheric lesions, the DIR contrast appears to be equally sensitive to the MP2RAGE and SPACE, but most sensitive for cerebellar MS plaques. The DIR sequence is also the one that reveals cortical hemispheric lesions best. T1 relaxation times at 3T in the WM and GM of the hemispheres and the cerebellum, as obtained with the MP2RAGE sequence, are shown in table 2. Extending previous studies, we confirm overall longer T1-values in lesion tissue and higher standard deviations compared to the non-lesion tissue and control tissue in healthy controls. We hypothesize a biological (different degree of axonal loss and demyelination) rather than technical origin. Conclusion In this study, we applied 5 MR contrasts including two novel sequences to investigate the contrast of highest sensitivity for early MS diagnosis. In addition, we characterized for the first time the T1 relaxation time in cortical and sub-cortical regions of the hemispheres and the cerebellum. Results are in agreement with previous publications and meaningful biological interpretation of the data.