949 resultados para Gene Expression Regulation, Plant
Resumo:
Background: Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion: Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Resumo:
Background: Alterations in lipid metabolism occur when animals are exposed to different feeding systems. In the last few decades, the characterisation of genes involved in fat metabolism and technological advances have enabled the study of the effect of diet on the milk fatty acid (FA) profile in the mammary gland and aided in the elucidation of the mechanisms of the response to diet. The aim of this study was to evaluate the effect of different forage diets (grazing vs. hay) near the time of ewe parturition on the relationship between the fatty acid profile and gene expression in the mammary gland of the Churra Tensina sheep breed. Results: In this study, the forage type affected the C18:2 cis-9 trans-11 (CLA) and long-chain saturated fatty acid (LCFA) content, with higher percentages during grazing than during hay feeding. This may suggest that these FAs act as regulatory factors for the transcriptional control of the carnitine palmitoyltransferase 1B (CPT1B) gene, which was more highly expressed in the grazing group (GRE). The most highly expressed gene in the mammary gland at the fifth week of lactation is CAAT/ enhancer- binding protein beta (CEBPB), possibly due to its role in milk fat synthesis in the mammary gland. More stable housekeeping genes in the ovine mammary gland that would be appropriate for use in gene expression studies were ribosomal protein L19 (RPL19) and glyceraldehyde- 3- phosphate dehydrogenase (GAPDH). Conclusions: Small changes in diet, such as the forage preservation (grazing vs. hay), can affect the milk fatty acid profile and the expression of the CPT1B gene, which is associated with the oxidation of fatty acids. When compared to hay fed indoors, grazing fresh low mountain pastures stimulates the milk content of CLA and LCFA via mammary uptake. In this sense, LCFA in milk may be acting as a regulatory factor for transcriptional control of the CPT1B gene, which was more highly expressed in the grazing group.
Resumo:
Huntington's disease is a rare neurodegenerative disease caused by a pathologic CAG expansion in the exon 1 of the huntingtin (HTT) gene. Aggregation and abnormal function of the mutant HTT (mHTT) cause motor, cognitive and psychiatric symptoms in patients, which lead to death in 15-20 years. Currently, there is no treatment for HD. Experimental approaches based on drug, cell or gene therapy are developed and reach progressively to the clinic. Among them, mHTT silencing using small non-coding nucleic acids display important physiopathological benefit in HD experimental models.
Resumo:
We have developed an activator/repressor expression system for budding yeast in which tetracyclines control in opposite ways the ability of tetR-based activator and repressor molecules to bind tetO promoters. This combination allows tight expression of tetO-driven genes, both in a direct (tetracycline-repressible) and reverse (tetracycline-inducible) dual system. Ssn6 and Tup1, that are components of a general repressor complex in yeast, have been tested for their repressing properties in the dual system, using lacZ and CLN2 as reporter genes. Ssn6 gives better results and allows complete switching-off of the regulated genes, although increasing the levels of the Tup1-based repressor by expressing it from a stronger promoter improves repressing efficiency of the latter. Effector-mediated shifts between expression and non-expression conditions are rapid. The dual system here described may be useful for the functional analysis of essential genes whose conditional expression can be tightly controlled by tetracyclines.
Resumo:
Background: Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen. Results: Using expression profile analyses, we studied the regenerative behaviour of wing discs at 0, 24 and 72 hours after fragmentation and implantation into adult females. Based on expression level, we generated a catalogue of genes with putative role in wing disc regeneration, identifying four classes: 1) genes with differential expression within the first 24 hours; 2) genes with differential expression between 24 and 72 hours; 3) genes that changed significantly in expression levels between the two time periods; 4) genes with a sustained increase or decrease in their expression levels throughout regeneration. Among these genes, we identified members of the JNK and Notch signalling pathways and chromatin regulators. Through computational analysis, we recognized putative binding sites for transcription factors downstream of these pathways that are conserved in multiple Drosophilids, indicating a potential relationship between members of the different gene classes. Experimental data from genetic mutants provide evidence of a requirement of selected genes in wing disc regeneration. Conclusions: We have been able to distinguish various classes of genes involved in early and late steps of the regeneration process. Our data suggests the integration of signalling pathways in the promoters of regulated genes.
Resumo:
BACKGROUND: Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. RESULTS: RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. CONCLUSION: This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.
Resumo:
Background: Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen. Results: Using expression profile analyses, we studied the regenerative behaviour of wing discs at 0, 24 and 72 hours after fragmentation and implantation into adult females. Based on expression level, we generated a catalogue of genes with putative role in wing disc regeneration, identifying four classes: 1) genes with differential expression within the first 24 hours; 2) genes with differential expression between 24 and 72 hours; 3) genes that changed significantly in expression levels between the two time periods; 4) genes with a sustained increase or decrease in their expression levels throughout regeneration. Among these genes, we identified members of the JNK and Notch signalling pathways and chromatin regulators. Through computational analysis, we recognized putative binding sites for transcription factors downstream of these pathways that are conserved in multiple Drosophilids, indicating a potential relationship between members of the different gene classes. Experimental data from genetic mutants provide evidence of a requirement of selected genes in wing disc regeneration. Conclusions: We have been able to distinguish various classes of genes involved in early and late steps of the regeneration process. Our data suggests the integration of signalling pathways in the promoters of regulated genes.
Resumo:
The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.
Resumo:
To examine human gene expression during uncomplicated P. falciparum malaria, we obtained three samples (acute illness, treatment, and recovery) from 10 subjects and utilized each subject's recovery sample as their baseline. At the time of acute illness (day 1), subjects had upregulation of innate immune response, cytokine, and inflammation-related genes (IL-1β, IL-6, TNF, and IFN-γ), which was more frequent with parasitemias >100,000 per μL and body temperatures ≥39°C. Apoptosis-related genes (Fas, BAX, and TP53) were upregulated acutely and for several days thereafter (days 1-3). In contrast, the expression of immune-modulatory (transcription factor 7, HLV-DOA, and CD6) and apoptosis inhibitory (c-myc, caspase 8, and Fas Ligand G) genes was downregulated initially and returned to normal with clinical recovery (days 7-10). These results indicate that the innate immune response, cytokine, and apoptosis pathways are upregulated acutely in uncomplicated malaria with concomitant downregulation of immune-modulatory and apoptosis inhibitory genes.
Resumo:
PURPOSE: Because desmoid tumors exhibit an unpredictable clinical course, translational research is crucial to identify the predictive factors of progression in addition to the clinical parameters. The main issue is to detect patients who are at a higher risk of progression. The aim of this work was to identify molecular markers that can predict progression-free survival (PFS). EXPERIMENTAL DESIGN: Gene-expression screening was conducted on 115 available independent untreated primary desmoid tumors using cDNA microarray. We established a prognostic gene-expression signature composed of 36 genes. To test robustness, we randomly generated 1,000 36-gene signatures and compared their outcome association to our define 36-genes molecular signature and we calculated positive predictive value (PPV) and negative predictive value (NPV). RESULTS: Multivariate analysis showed that our molecular signature had a significant impact on PFS while no clinical factor had any prognostic value. Among the 1,000 random signatures generated, 56.7% were significant and none was more significant than our 36-gene molecular signature. PPV and NPV were high (75.58% and 81.82%, respectively). Finally, the top two genes downregulated in no-recurrence were FECH and STOML2 and the top gene upregulated in no-recurrence was TRIP6. CONCLUSIONS: By analyzing expression profiles, we have identified a gene-expression signature that is able to predict PFS. This tool may be useful for prospective clinical studies. Clin Cancer Res; 21(18); 4194-200. ©2015 AACR.
Resumo:
Most fishes produce free-living embryos that are exposed to environmental stressors immediately following fertilization, including pathogenic microorganisms. Initial immune protection of embryos involves the chorion, as a protective barrier, and maternally-allocated antimicrobial compounds. At later developmental stages, host-genetic effects influence susceptibility and tolerance, suggesting a direct interaction between embryo genes and pathogens. So far, only a few host genes could be identified that correlate with embryonic survival under pathogen stress in salmonids. Here, we utilized high-throughput RNA-sequencing in order to describe the transcriptional response of a non-model fish, the Alpine whitefish Coregonus palaea, to infection, both in terms of host genes that are likely manipulated by the pathogen, and those involved in an early putative immune response. Embryos were produced in vitro, raised individually, and exposed at the late-eyed stage to a virulent strain of the opportunistic fish pathogen Pseudomonas fluorescens. The pseudomonad increased embryonic mortality and affected gene expression substantially. For example, essential, upregulated metabolic pathways in embryos under pathogen stress included ion binding pathways, aminoacyl-tRNA-biosynthesis, and the production of arginine and proline, most probably mediated by the pathogen for its proliferation. Most prominently downregulated transcripts comprised the biosynthesis of unsaturated fatty acids, the citrate cycle, and various isoforms of b-cell transcription factors. These factors have been shown to play a significant role in host blood cell differentiation and renewal. With regard to specific immune functions, differentially expressed transcripts mapped to the complement cascade, MHC class I and II, TNF-alpha, and T-cell differentiation proteins. The results of this study reveal insights into how P. fluorescens impairs the development of whitefish embryos and set a foundation for future studies investigating host pathogen interactions in fish embryos.
Resumo:
PURPOSE: Pediatric rhabdomyosarcoma (RMS) has two common histologic subtypes: embryonal (ERMS) and alveolar (ARMS). PAX-FOXO1 fusion gene status is a more reliable prognostic marker than alveolar histology, whereas fusion gene-negative (FN) ARMS patients are clinically similar to ERMS patients. A five-gene expression signature (MG5) previously identified two diverse risk groups within the fusion gene-negative RMS (FN-RMS) patients, but this has not been independently validated. The goal of this study was to test whether expression of the MG5 metagene, measured using a technical platform that can be applied to routine pathology material, would correlate with outcome in a new cohort of patients with FN-RMS. EXPERIMENTAL DESIGN: Cases were taken from the Children's Oncology Group (COG) D9803 study of children with intermediate-risk RMS, and gene expression profiling for the MG5 genes was performed using the nCounter assay. The MG5 score was correlated with clinical and pathologic characteristics as well as overall and event-free survival. RESULTS: MG5 standardized score showed no significant association with any of the available clinicopathologic variables. The MG5 signature score showed a significant correlation with overall (N = 57; HR, 7.3; 95% CI, 1.9-27.0; P = 0.003) and failure-free survival (N = 57; HR, 6.1; 95% CI, 1.9-19.7; P = 0.002). CONCLUSIONS: This represents the first, validated molecular prognostic signature for children with FN-RMS who otherwise have intermediate-risk disease. The capacity to measure the expression of a small number of genes in routine pathology material and apply a simple mathematical formula to calculate the MG5 metagene score provides a clear path toward better risk stratification in future prospective clinical trials. Clin Cancer Res; 21(20); 4733-9. ©2015 AACR.
Resumo:
BackgroundBipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain.AimsWe sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL.MethodTo detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 5775) and cognitive performance (n = 342) among healthy individuals.ResultsIntegrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P = 5.85×10(-5)). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P = 3.54×10(-8)). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals.ConclusionsOur findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder.
Resumo:
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.
Resumo:
Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.