1000 resultados para Gamow-Teller transition
Resumo:
A novel conjugated oligomer, oligo(9,9'-dioctylfluorene-alt-bithiophene) (OF8T2), was found to exhibit a unique phase transition between crystalline and liquid-crystalline states, and a liquid-crystalline glass was easily generated, offering better TFT device performance. In thin films, upon annealing the OF8T2 molecules oriented preferentially with their planes of conjugation being normal to the substrate, and both film thickness and annealing temperature were critical to the film morphology and the molecular orientation. When the OF8T2 film was deposited on a rubbed polyimide surface and annealed, the molecules aligned their long axes along the rubbing direction.
Resumo:
In this Letter, we report the morphological transition of dry block copolymer vesicles into onion-like multilamellar micelles induced through heating. When the temperature is higher than the glass transition temperature of block copolymer, the vesicles can collapse, and finally form onion-like multilamellarmicelles via micro phase separation. This phenomenon is observed in both A-B and A-B-A block copolymer vesicles, indicating that the technique used in this study can be an alternative method to synthesize multilamellar micelles.
Resumo:
We report that the brittle-ductile transition of polymers induced by temperature exhibits critical behavior. When t close to 0, the critical surface to surface interparticle distance (IDc) follows the scaling law: IDc proportional to t(-v) where t = 1 - T/T-BD(m) (T and T-BD(m) are the test temperature and brittle-ductile transition temperature of matrix polymer, respectively) and v = 2/D. It is clear that the scaling exponent v only depends on dimension (D). For 2, 3, and 4 dimension, v = 1, 2/3, and 1/2 respectively. The result indicates that the ID, follows the same scaling law as that of the correlation length (xi), when t approach to zero.
Resumo:
Poly (3-butylthiophene) (P3BT) is a much less studied conjugated polymer despite its high crystallizability and thus excellent electrical property. In this work, morphology of P3BT at different crystalline polymorphs and solvent/thermal induced phase transition between form I and U modifications have been intensively investigated by using optical microscopy, electron microscopy, differential scanning calorimetry, and X-ray diffraction. It is shown that a direct deposition from carbon disulfide (CS2) at fast evaporation results in P3BT crystals in form I modification, giving typical whiskerlike morphology. In contrast, low evaporation rate from CS, leads to formation of form II crystals with spherulitic morphology, which is so far scarcely observed in polythiophene.
Resumo:
The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, Six Structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and ALIN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable Structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN.
Resumo:
The morphology transition of polystyrene-block-poly(butadiene)-block-poly(2-vinylpyridine) (SBV) triblock thin film induced in benzene vapor showing weak selectivity for PS is investigated. The order-order transitions (OOT) in the sequence of core-shell cylinders (C), sphere in 'diblock gyroid' (sdG), sphere in lamella (sL) and sphere (S) are observed. The projection along (111) direction in Gyroid phase (sdG(111)) is found to epitaxially grow from C(001) in the film.
Resumo:
It is noteworthy to understand the details of interactions between antitumor drugs and DNA because the binding modes and affinities affect their antitumor activities. Here, The interaction of toluidine blue (TB), a potential antitumor drug for photodynamic therapy of tumor, with calf thymus DNA (ctDNA) was explored by UV-vis, fluorescence, circular dichroism (CD) spectroscopy, UV-rnelting method and surface-enhance Raman spectroscopy (SERS). The experimental results suggest that TB could bind to ctDNA via both electrostatic interaction and partial intercalation.
Resumo:
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) approximate to Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) call be easily achieved by varying of the metal center.
Resumo:
Gelatin is widely used in food, pharmaceutical, and photographic industries due to the coil-helix transition, whereas the structural inhomogeneity considerably affects its essential properties closely connecting with the industrial applications. The spatially structural inhomogeneity of the gelatin caused by the uneven and unstable temperature field is analyzed by the finite element method during the cooling-induced coil-helix transition process. The helix conversion and the crosslinking density as functions of time and spatial grid are calculated by the incremental method. A length distribution density function is introduced to describe the continuous length distributions of two kinds of triple helices.
Resumo:
The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.
Resumo:
A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO4)(MeOH)(0.5)(H2O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and Fe-51 Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies.
Resumo:
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.
Resumo:
The reaction mechanisms of the H-2 with the homonuclear dimers M-2 (Cu, Ag, Au) and the heteronuclear dimers PdM (M = Cu, Ag, Au) were studied by use of density functional theory. For the H-2 reactions with homonuclear dimers M-2 (Cu, Ag, Au), it was found that it is easier for Au-2 to dissociate the hydrogen molecule compared with Cu-2 and Ag-2. For H-2 reactions with the heteronuclear dimers PdM (M = Cu, Ag, An), the hydrogen molecule can be easily dissociated at Pd site, rather than at noble metal site.
Resumo:
Bond distances, dissociation energies, ionization potentials and electron affinities of 4d transition metal monoxides from YO to CdO and their positive and negative ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, SVWN, MPW1PW91 and PBE1PBE. It was found that calculated properties are highly dependent on the functionals employed, especially for dissociation energy. For most neutral species, pure density functionals BLYP, BPW91 and BP86 have good performance in predicting dissociation energy than hybrid density functionals B3LYP, B3PW91 and B3P86. In addition, BLYP gives the largest bond distance compared with other density functional methods, while SVWN gives shortest bond distance, largest dissociation energy and electron affinity. For the ground state, the spin multiplicity of the charged species can be obtained by +/- 1 of their corresponding neutral species.