972 resultados para GUSTAVO MUÑOZ VALENCIA
Resumo:
The reaction of cis-[RuCl2(dppb)(N-N)], dppb = 1,4-bis(diphenylphosphino)butane, complexes with the ligand HSpymMe(2), 4,6-dimethyl-2-mercaptopyrimidine, yielded the cationic complexes [Ru(SpymMe(2))(dppb)(N-N)]PF6, N-N = bipy (1) and Me-bipy (2), bipy = 2,2`-bipyridine and Me-bipy = 4,4`dimethyl-2,2`-bipyridine, which were characterized by spectroscopic and electrochemical techniques and X-ray crystallography and elemental analysis. Additionally, preliminary in vitro tests for antimycobacterial activity against Mycobacterium tuberculosis H37Rv ATCC 27264 and antitumor activity against the MDA-MB-231 human breast tumor cell line were carried out on the new complexes and also on the precursors cis-[RuCl2(dppb)(N-N)], N-N = bipy (3) and Me-bipy (4) and the free ligands dppb, bipy, Me-bipy and SpymMe(2). The minimal inhibitory concentration (MIC) of compounds needed to kill 90% of mycobacterial cells and the IC50 values for the antitumor activity were determined. Compounds 1-4 exhibited good in vitro activity against M. tuberculosis, with MIC values ranging between 0.78 and 6.25 mu g/mL, compared to the free ligands (MIC of 25 to >50 mu g/mL) and the drugs used to treat tuberculosis. Complexes I and 2 also showed promising antitumor activity, with IC50 values of 0.46 +/- 0.02 and 0.43 +/- 0.08 mu M, respectively, against MDA-MB-231 breast tumor cells. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Sodium alumino-phosphate glasses co-doped with Yb(3+) and Tm(3+) ions have been prepared with notably low OH(-) content, and characterized from the viewpoint of their spectroscopic properties. In these glasses, Yb(3+) acts as an efficient sensitizer of excitation energy at 0.98 mu m - which can be provided by high power and low cost diode lasers, and subsequently undergoes non-resonant energy transfer to Tm(3+) ions ((2)F(5/2), (3)H(6) --> (2)F(7/2), (3)H(5)). Through this process, the emitting level (3)F(4) is rapidly populated, generating improved emission at 1.8 mu m ((3)F(4) --> (3)H(6)). In order to guarantee the efficiency of such favorable energy transfer, energy losses via multiphonon decay, Yb-Yb radiative trapping, and non- radiative transfer to OH(-) groups were evaluated, and minimized when possible. The dipole - dipole energy transfer microscopic parameters corresponding to Yb(3+) --> Tm(3+), Yb(3+) --> Yb(3+) and Tm(3+) --> Tm(3+) transfers, calculated by the Forster-Dexter model, are C(Yb-Tm) = 2.9 x 10(-40) cm(6) s(-1), C(Yb-Yb) = 42 x 10(-40) cm(6) s(-1) and C(Tm-Tm) = 43 x 10(-40) cm(6) s(-1), respectively.
Resumo:
The synthesis and characterization of ruthenium compounds of the type [RuCl(2)(NO)(dppp)(L)]PF(6) [dppp = 1,3-bis(diphenylphosphino)propane; L = pyridine, 4-methylpyridine, 4-phenylpyridine and dimethyl sulfoxide] are described. The complexes were characterized by elemental analysis, UV/Vis and infrared spectroscopy, cyclic voltammetry, and X-ray crystallography for the complexes with the pyridine and 4-methylpyridine ligands. In vitro evaluation of these nitrosyl complexes revealed cytotoxic activity from 7.1 to 19.0 mu M against the MDA-MB-231 breast tumor cells and showed that, in this case, they are more active than the reference metallodrug cisplatin. The 1,3-bis(diphenylphosphino)propane and the N-heterocyclic ligands alone failed to show cytotoxic activities at the concentrations tested (maximum concentration utilized = 200 mu M). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This work deals with the covalent functionalization of single-wall carbon nanotubes (SWNTs) with phenosafranine (PS) and Nile Blue (NB) dyes. These dyes can act as photosensitizers in energy and electron transfer reactions, with a potential to be applied in photodynamic therapy. Several changes in the characteristic Raman vibrational features of the dyes suggest that a covalent modification of the nanotubes with the organic dyes occurs. Specifically, the vibrational modes assigned to the NH(2) moieties of the dyes are seen to disappear in the SWNT-dye nanocomposites, corroborating the bond formation between amine groups in the dyes and carboxyl groups in the oxidized nanotubes. The X-ray absorption (XANES) data also show, that the intense band at 398.6 eV attributed to 1s -> 2p pi* transition of the nitrogen of the aromatic PS ring, is shifted due to the bonding with the carbonic structure of the SWNTs. The cytotoxicity data of dyes-modified SWNT composites in the presence and absence of light shows that the SWNT-NB (4 mu g/mL) composite presents a good photodynamic effect, namely a low toxicity in the dark, higher toxicity in the presence of light and also a reduced dye photobleaching by auto-oxidation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The [Ru(3)O(H(3)CCO(2))(6)(py)(2)(L)]PF(6) clusters, where L=methanol or dimethyl sulfoxide, can be activated by peroxide or oxygen donor species, such as tert-butyl hydroperoxide (TBHP) or iodosylbenzene (PhIO), respectively, generating reactive intermediates of the type [Ru(3)(IV,IV,III)=0](+). In this way, they catalyse the oxidation of cyclohexane or cyclohexene by TBHP and PhIO, via oxygen atom transfer, rather than by the alternative oxygen radical mechanism characteristic of this type of complexes. In addition to their ability to perform efficient olefin epoxydation catalysis, these clusters also promote the cleavage of the C-H bond in hydrocarbons, resembling the oxidation catalysis by metal porphyrins. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of benzoate and sorbate ions in commercial beverages. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. As the high resolution obtained experimentally for sorbate and benzoate in the studies presented in the literature is not in agreement with that expected from the ionic mobility values published, a procedure to determine these values was carried out. The salicylate ion was used as the internal standard. The background electrolyte was composed of 25 mmol L(-1) tris(hydroxymethyl)aminomethane and 12.5 mmol L(-1) 2-hydroxyisobutyric acid, atpH 8.1.Separation was conducted in a fused-silica capillary(32 cm total length and 8.5 cm effective length, 50 mu m I.D.), with short-end injection configuration and direct UV detection at 200 nm for benzoate and salicylate and 254 nm for sorbate ions. The run time was only 28 s. A few figures of merit of the proposed method include: good linearity (R(2) > 0.999), limit of detection of 0.9 and 0.3 mg L(-1) for benzoate and sorbate, respectively, inter-day precision better than 2.7% (n =9) and recovery in the range 97.9-105%. Beverage samples were prepared by simple dilution with deionized water (1:11, v/v). Concentrations in the range of 197-401 mg L(-1) for benzoate and 28-144 mg L(-1) for sorbate were found in soft drinks and tea. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of propranolol in pharmaceutical preparations. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. Benzylamine was used as the internal standard. The background electrolyte was composed of 60 mmol L(-1) tris(hydroxymethyl)aminomethane and 30 mmol L(-1) 2-hydroxyisobutyric acid,at pH 8.1. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 mu m I.D.) with a short-end injection configuration and direct UV detection at 214 nm. The run time was only 14 s. Three different strategies were studied in order to develop a fast CE method with low total analysis time for propranolol analysis: low flush time (Lflush) 35 runs/h, without flush (Wflush) 52 runs/h, and Invert (switched polarity) 45 runs/h. Since the three strategies developed are statistically equivalent, Mush was selected due to the higher analytical frequency in comparison with the other methods. A few figures of merit of the proposed method include: good linearity (R(2) > 0.9999); limit of detection of 0.5 mg L(-1): inter-day precision better than 1.03% (n = 9) and recovery in the range of 95.1-104.5%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study we examined the possible antigenotoxic effect of selenium (Se) in rats chronically exposed to low levels of methylmercury (MeHg) and the association between glutathione peroxidase (GSH-Px) activity and DNA lesions (via comet assay) in the same exposed animals. Rats were divided into six groups as follows: (Group I) received water; (Group II) received MeHg (100 mu g/day); (Group III) received Se (2 mg/L drinking water); (Group IV) received Se (6 mg/L drinking water); (Group V) received MeHg (100 mu g/day) and Se (2 mg/L drinking water); (Group VI) received MeHg (100 mu g/day) and Se (6 mg/L drinking water). Total treatment time was 100 days. GSH-Px activity was determined spectrophotometrically and DNA damage was determined by comet assay. Mean GSH-Px activity in groups I, II, III, IV, V and VI were, respectively: 40.19 +/- A 17.21; 23.63 +/- A 6.04; 42.64 +/- A 5.70; 38.50 +/- A 7.15; 34.54 +/- A 6.18 and 41.39 +/- A 11.67 nmolNADPH/min/gHb. DNA damage was represented by a mean score from 0 to 300; the results for groups I, II, III, IV, V and VI were, respectively: 6.87 +/- A 3.27; 124.12 +/- A 13.74; 10.62 +/- A 3.81; 13.25 +/- A 1.76; 86.87 +/- A 11.95 and 76.25 +/- A 7.48. There was a significant inhibition of GSH-Px activity in group II compared with group I (P < 0.05). Groups V and VI did not show a difference in enzyme activity compared with groups III and IV, showing the possible protective action of Se. Comet assay presented a significant difference in DNA migration between group II and group I (P < 0.0001). Groups V and VI showed a significant reduction in MeHg-induced genotoxicity (P < 0.001) when compared with group II. A negative correlation (r = -0.559, P < 0.05) was found between GSH-Px activity and DNA lesion, showing that the greater the DNA damage, the lower the GSH-Px activity. Our findings demonstrated the oxidative and genotoxic properties of MeHg, even at low doses. Moreover, Se co-administration reestablished GSH-Px activity and reduced DNA damage.
Resumo:
The fractionation through bioguided antileishmanial activity of the dichloromethane extract of Cassia fistula fruits (Leguminosae) led to the isolation of the active isoflavone biochanin A, identified by spectroscopic methods. This compound showed 50% effective concentration (EC(50)) value of 18.96 mu g/mL against promastigotes of Leishmania (L.) chagasi. The cytotoxicity of this substance against peritoneal macrophages resulted in an EC(50) value of 42.58 mu g/mL. Additionally, biochanin A presented an anti-Trypanosoma-cruzi activity, resulting in an EC(50) value of 18.32 mu g/mL and a 2.4-fold more effectiveness than benznidazole. These results contribute with novel antiprotozoal compounds for future drug design studies.
Resumo:
In the present investigation, we have evaluated the antileishmanial and antitrypanosomal activity of methanolic crude extracts obtained from eight species of cnidarians and of a modified steroid isolated from the octocoral Carijoa riisei. The antileishmanial activity of cnidarians crude extracts showed 50% inhibitory concentration ( IC50) values in the concentration range between 2.8 and 93.3 mu g/mL. Trypomastigotes of Trypanosoma cruzi were less susceptible to the crude extracts, with IC50 values in the concentration range between 40.9 and 117.9 mu g/mL. The steroid (18-acetoxipregna-1,4,20-trien-3-one) displayed a strong antileishmanial activity, with an IC50 value of 5.5 mu g/mL against promastigotes and 16.88 mu g/mL against intracellular amastigotes. The steroid also displayed mammalian cytotoxicity (IC50 of 10.6 mu g/mL), but no hemolytic activity was observed at the highest concentration of 12.5 mu g/mL. The antileishmanial effect of the steroid in macrophages suggested other mechanism than macrophage activation, as no upregulation of nitric oxide was observed. The antitrypanosomal activity of the steroid resulted in an IC50 value of 50.5 mu g/mL. These results indicate the potential of cnidarian natural compounds as antileishmanial drug candidates.
Resumo:
The bioelectrochemical behavior of three triphenylmethane (TPM) dyes commonly used as pH indicators, and their application in mediated electron transfer systems for glucose oxidase bioanodes in biofuel cells was investigated. Bromophenol Blue, Bromothymol Blue, Bromocresol Green were compared bio-electrochemically against two widely used mediators, benzoquinone and ferrocene carboxy aldehyde. Biochemical studies were performed in terms of enzymatic oxidation, enzyme affinity, catalytic efficiency and co-factor regeneration. The different features of the TPM dyes as mediators are determined by the characteristics in the oxidation/reduction processes studied electrochemically. The reversibility of the oxidation/reduction processes was also established through the dependence of the voltammetric peaks with the sweep rates. All three dyes showed good performances compared to the FA and BQ when evaluated in a half enzymatic fuel cell. Potentiodynamic and power response experiments showed maxima power densities of 32.8 mu W cm(-2) for ferrocene carboxy aldehyde followed by similar values obtained for TPM dyes around 30 mu W cm(-2) using glucose and mediator concentrations of 10 mmol L(-1) and 1.0 mmol L(-1), respectively. Since no mediator consumption was observed during the bioelectrochemical process, and also good redox re-cycled processes were achieved, the use of triphenylmethane dyes is considered to be promising compared to other mediated systems used with glucose oxiclase bioanodes and/or biofuel cells. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The synthesis, characterization and the anti-Mycobacterium tuberculosis (MTB) activities of three ruthenium complexes containing the 2-pyridinecarboxylic acid anion (picolinate), with formulae cis-[Ru(pic)(dppm)(2)]PF(6) (1), Cis- [Ru(pic)(dppe)(2)]PF(6) (2) and [Ru(pic)(2)(PPh(3))(2)] (3) [pic = 2-pyridinecarboxylate; dppm = bis(diphenylphosphino)methane: dppe = 1,2-bis(diphenylphosphino)ethane; PPh(3) = triphenylphosphine] are reported in this article. The complexes were characterized by elemental analysis, spectroscopic and electrochemical techniques. Their in vitro anti mycobacterial activity was determinated as the Minimum Inhibitory Concentration (MIC) for MTB cell growth, measured by the REMA method. The best MICs were found for complexes (1) and (2), with values of 0.78 and 0.26 mu g/mL, respectively. The results are comparable to or better than ""first line"" or ""second line"" drugs commonly used in the treatment of TB. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In the treatment of cyclometallated dimer [Pd(dmba)(mu-Cl)](2) (dmba = N,N-dimethylbenzylamine) with AgNO(3) and acetonitrile the result was the monomeric cationic precursor [Pd(dmba)(NCMe)(2)](NO(3)) (NCMe=acetonitrile) (1). Compound 1 reacted with m-nitroaniline (m-NAN) and pirazine (pz), originating [Pd(dmba)(ONO(2))(m-NAN)] (2) and [{Pd(dmba)(ONO(2))}(2)(mu-pz)] center dot H(2)O (3), respectively. These compounds were characterized by elemental analysis, IR and NMR spectroscopy. The IR spectra of (2-3) display typical bands of monodentade O-bonded nitrate groups, whereas the NMR data of 3 are consistent with the presence of bridging pyrazine ligands. The structure of compound 3 was determined by Xray diffraction analysis. This packing consists of a supramolecular chain formed by hydrogen bonding between the water molecule and nitrato ligands of two consecutive [Pd(2)(dmba)(2)(ONO(2))2(mu-pz)] units. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The neutral complex [HgPh(dmpymt)] 1 (dmpymtH = 4,6-dimethylpyrimidine-2(1H)-thione) reacts with HBF(4) to give the cationic complex [HgPh(dmpymtH)][BF(4)] 2. The X-ray molecular structure of the later revealed a [2+1] coordination sphere about the mercury(II) atom (C-Hg-S and Hg center dot center dot center dot N). In the dinuclear complex [(HgPh)(2)(mu-dtu)] 3 [dtuH(2) = 2,4(1H,3H)-pyrimidinedithione or dithiouracil] the coordination spheres are also [2+1] although dissimilar regarding the Hg center dot center dot center dot N secondary bonds. NMR spectroscopy ((1)H, (13)C and (199)Hg) studies were undertaken in solution and the results discussed in the light of the X-ray structures. (C) 2008 Elsevier B. V. All rights reserved.